The Chemistry Maths Book, Second Edition

(Grace) #1

140 Chapter 5Integration


In this case the value of sin 1 boscillates between + 1 and − 1 as bincreases, and no


unique value can be assigned to the integral as defined here. On the other hand, it is


shown in Example 6.13 that, fora 1 > 10 ,


This result is valid for all positive values of the parameter a, however small, and it


follows that


We note that the limit must be taken afterintegration; taking the limit before


integration leads to a different, and divergent, integral.


Even and odd functions


When a function has the property


f(−x) 1 = 1 f(x) (5.20)


it is called an even functionof x; it has even parity(or parity + 1 ) and is symmetric


with respect to the axis x 1 = 10 (the y-axis). Examples of even functions are x


2

, e


−|x|

(figure 5.8) and cos 1 x(shown in Figure 5.10a); in each case the value of the function


is unchanged when xis replaced by −x. On the other hand, a function with the


property


f(−x) 1 = 1 −f(x) (5.21)


is said to be an odd function; it has odd parity(or parity − 1 ) and is antisymmetric


with respect to the axisx 1 = 10. Examples of odd functions arex


3

,sin 1 x(shown in


Figure 5.10b), andx 1 cos 1 x; in each case the value of the function changes sign when x


is replaced by−x. The product of two even functions or of two odd functions is even;


the product of an even function and an odd function is odd. Thusx 1 cos 1 xis an odd


function, withxodd andcos 1 xeven.


lim cos lim


aa


exdx


a


a


ax

→→



=














=


00


0

2

1


Z 0



Z


0

2

1



exdx


a


a


−ax

=






cos



  • 1


− 1


−π


0 πx


−x


••








.
..
...

.
..
...

.
..
...

.
..
...

.
...
..

.
...
..

.
..

...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

......

......

......

......

......

......

......

......

......

......

......

......

......

.......

......

......

.......

......

......

........

......

.......

........

.......

........

.........

..........

.............

.......................................

.............

.........

..........

........

.......

........

.......

......

.......

.......

......

.......

......

......

.......

......

.....

.......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.......

......

......

.......

......

......

.......

.......

.......

.......

.......

........

.........

.........

...........

....................................................

...........

.........

.........

........

.......

........

......

.......

.......

......

.......

......

......

......

.......

......

......

.......

.....

......

.......

......

.....

.......

.....

......

.......

....

(b) y=sinx;o ddfunct ion


− 1


+1


−π −x 0 πx


••


••


...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

...

..

.

....................

.............

.........

..........

........

.......

........

.......

......

.......

.......

......

.......

......

......

.......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.......

......

......

.......

......

......

........

......

.......

.......

........

.......

.........

.........

...........

.....................................................

..........

.........

.........

........

.......

........

.......

......

.......

......

.......

.......

......

......

......

......

......

.......

......

.....

.......

......

.....

.......

......

.....

.......

......

.....

.......

.....

......

.......

.....

......

.......

......

.....

.......

......

......

.......

......

......

.......

......

......

.......

.......

.......

........

.......

........

.........

..........

............

....................

(a ) y=cosx;evenfuncti on


Figure 5.10

Free download pdf