158 Chapter 5Integration
according as the external pressurep
ext
is greater than or less than p. Ifp
ext
1 > 1 pthen
the fluid is compressed, and the work done by the external forceF
ext
in moving the
piston from ato bis
(5.64)
Now, the external force has magnitude|F
ext
| 1 = 1 p
ext
A, and a length of cylinder |dx|
contains a volume|dV| 1 = 1 A|dx|. The work can therefore be written in ‘pressure–
volume’ form as
(5.65)
in which the limits of integration now refer to the volume, and the minus sign is
included to make the work positive for compression. It can be shown that this
expression for the mechanical work done on a thermodynamic system is independent
of the shape of the container.
To compress the fluid, it is necessary that the external pressure be greater than the
internal pressure of the fluid. Letp
ext
1 = 1 (p 1 + 1 ∆p)where∆pis a positive excess pressure
that, for simplicity, can be assumed to be constant throughout the compression.
Then, with V
a
1 > 1 V
b
,
(5.66)
Conversely, to allow the fluid to expand fromV
b
toV
a
it is necessary that the external
pressure be smaller than the internal pressure. Ifp
ext
1 = 1 (p 1 − 1 ∆p)then
(5.67)
>−Z
b
a
pdV
WpdVpVV
ba
b
a
ab
=−Z +∆()−
>−Z
a
b
pdV
W p dV p dV p dV p V V
ab
a
b
a
b
a
b
ab
=−ZZZ−∆∆=− + ()−
WpdV
ab
a
b
=−Z
ext
WFdx
ab
a
b
=Z
ext
. ......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
...
..
................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
...
..
..
..
..............................
..
...
..
...
..
..
...
..
...
...
................................
...
..
...
..
.......................
...
..
..
...
..
...
...
..
..
...
..
...
...
.......................
...
..
...
..
. ...............................
..
...
..
...
..
...
..
...
..
...
. ...............................
...
..
...
..
...
..
...
..
...
..
...
..
...
..
..
...
...
..
...
..
..
...
..
...
..
...
..................................................................................
.......
......
....
...
.......
......
......
p
.. .....................................................................................................
.......
......
......
.....
.......
......
....
p
ext
.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.......
.......
..
....
.......
.......
....
x
..
..
..
...
.
..
..
..
...
.
a
b
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
................
.
...
..
..
..
..
..
..
................
...
..
...........
.
...
..
..
.
...
..
..
..............
..
.
. ...............
...
..
..
.
...
..
..
................
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
Figure 5.23