The Chemistry Maths Book, Second Edition

(Grace) #1

178 Chapter 6Methods of integration


Solving forI


n

then gives


0 Exercises 52–54


EXAMPLE 6.15Determine a reduction formula for the definite integral


.


From the result of Example 6.14,


Becausesin 0 1 = 10 andcos


n− 1

(π 2 2) 1 = 10 ifn 1 > 11 , it follows that


with


For example,


0 Exercises 55, 56


EXAMPLE 6.16Determine a reduction formula for.


Because , the integrand is written as.


Then, by parts,


Now asr 1 → 1 ∞and, ifn 1 > 1 1,r


n− 1

e 1 = 10 whenr 1 = 10. Then, forn 1 ≥ 12 ,


−ar


2

0


Z


0
0

1

22

1


2


1


∞ ∞

erdr


a


er


n


−−ar n ar n−











=− +


( − ))


2


0

2

2

a


erdr


ar n

Z



−−

−−








−−

1


2


2


2

1

a


are r


ar n

d


dr


eare


−−ar ar

=−


22

2


Ierdr


n

ar n

=



Z


0

2


II I II I


42 0 53 1

3


4


3


4


1


2


3


16


4


5


4


5


2


3


8


15


==×=, ==×=


π


IxdxIdx


1

0

2

0

0

2

1


2


==ZZ,==


ππ

π


cos


I


n


n


In


nn

=



,≥



1


2


2

I


n


xx


n


n


I


n

n

n

=

















0

2

1

2

11


π

cos sin


Ixdx


n

n

=Z


0

π 2

cos


I


n


xx


n


n


I


n

n

n

=+





11


1

2

cos sin

Free download pdf