178 Chapter 6Methods of integration
Solving forI
n
then gives
0 Exercises 52–54
EXAMPLE 6.15Determine a reduction formula for the definite integral
.
From the result of Example 6.14,
Becausesin 0 1 = 10 andcos
n− 1
(π 2 2) 1 = 10 ifn 1 > 11 , it follows that
with
For example,
0 Exercises 55, 56
EXAMPLE 6.16Determine a reduction formula for.
Because , the integrand is written as.
Then, by parts,
Now asr 1 → 1 ∞and, ifn 1 > 1 1,r
n− 1
e 1 = 10 whenr 1 = 10. Then, forn 1 ≥ 12 ,
−ar
→
2
0
Z
0
0
1
22
1
2
1
∞ ∞
erdr
a
er
n
−−ar n ar n−
=− +
( − ))
2
0
2
2
a
erdr
ar n
Z
∞
−−
−−
−−
1
2
2
2
1
a
are r
ar n
d
dr
eare
−−ar ar
=−
22
2
Ierdr
n
ar n
=
−
Z
0
2
∞
II I II I
42 0 53 1
3
4
3
4
1
2
3
16
4
5
4
5
2
3
8
15
==×=, ==×=
π
IxdxIdx
1
0
2
0
0
2
1
2
==ZZ,==
ππ
π
cos
I
n
n
In
nn
=
−
,≥
−
1
2
2
I
n
xx
n
n
I
n
n
n
=
−
−
−
0
2
1
2
11
π
cos sin
Ixdx
n
n
=Z
0
π 2
cos
I
n
xx
n
n
I
n
n
n
=+
−
−
−
11
1
2
cos sin