178 Chapter 6Methods of integration
Solving forI
nthen gives
0 Exercises 52–54
EXAMPLE 6.15Determine a reduction formula for the definite integral
.
From the result of Example 6.14,
Becausesin 0 1 = 10 andcos
n− 1(π 2 2) 1 = 10 ifn 1 > 11 , it follows that
with
For example,
0 Exercises 55, 56
EXAMPLE 6.16Determine a reduction formula for.
Because , the integrand is written as.
Then, by parts,
Now asr 1 → 1 ∞and, ifn 1 > 1 1,r
n− 1e 1 = 10 whenr 1 = 10. Then, forn 1 ≥ 12 ,
−ar→
20
Z
0
01221
2
1
∞ ∞erdr
a
er
n
−−ar n ar n−=− +
( − ))
2
022a
erdr
ar nZ
∞−−−−
−−1
2
2
21a
are r
ar nd
dr
eare
−−ar ar=−
222
Ierdr
nar n=
−Z
02∞II I II I
42 0 53 13
4
3
4
1
2
3
16
4
5
4
5
2
3
8
15
==×=, ==×=
π
IxdxIdx
1020021
2
==ZZ,==
πππ
cos
I
n
n
In
nn=
−
,≥
−1
2
2I
n
xx
n
n
I
nnn=
−
−−021211
πcos sin
Ixdx
nn=Z
0π 2cos
I
n
xx
n
n
I
nnn=+
−
−−11
12cos sin