9.3 Partial differentiation 251
EXAMPLES 9.2Partial differentiation
(i) f(x,y,z) 1 = 1 x
2
1 + 12 y
2
1 + 13 z
2
1 + 14 xy 1 + 15 xz 1 + 16 yz
(ii) f(x,y) 1 = 1 (x
2
1 + 12 y
2
)
122
Letf 1 = 1 u
122
whereu 1 = 1 x
2
1 + 12 y
2
. Then, by the chain rule,
(iii) f(x,y) 1 = 1 y 1 sin(x
2
1 + 1 y
2
)
By the chain rule,
To find , letf 1 = 1 u 1 × 1 vwhereu 1 = 1 yandv 1 = 1 sin(x
2
1 + 1 y
2
). Then, by the product
rule,
0 Exercises 3–7
Higher derivatives
Like the derivative of a function of one variable (Section 4.9), the partial derivative
of a function of more than one variable can itself be differentiated if it satisfies the
necessary conditions of continuity and smoothness. For example, the cubic function
in two variables
z 1 = 1 x
3
1 + 12 x
2
y 1 + 13 xy
2
1 + 14 y
3
has partial first derivatives
∂
∂
=++,
∂
∂
=++
z
x
xxyy
z
y
343 2612 xxyy
22 2 2
=+++ 2
222 22
yxy xycos( ) sin( )
∂
∂
=×
∂
∂
+×
∂
∂
=× + + +
f
y
u
y
u
y
yy xy xy
v
v 2
22 22
cos( ) sin( ))× 1
∂
∂
f
y
∂
∂
=+
f
x
2 xy x y
22
cos( )
∂
∂
=×
∂
∂
=×=+
−−
f
y
df
du
u
y
uyyxy
1
2
42 2
12 2 2 12
()
∂
∂
=×
∂
∂
=×=+
−−
f
x
df
du
u
x
uxxxy
1
2
22
12 2 2 12
()
∂
∂
=++,
∂
∂
=++,
∂
∂
=++
f
x
xyz
f
y
yxz
f
z
245 446 656 zxy