The Chemistry Maths Book, Second Edition

(Grace) #1

9.6 Some differential properties 271


Then


Similarly,


Therefore


0 Exercise 49


EXAMPLE 9.19Show that the functionf 1 = 1 x


2

1 − 1 y


2

satisfies the Laplace equation


(i) In cartesian coordinates,


and


Therefore,


(ii) In polar coordinates,f 1 = 1 r


2

(cos


2

θ 1 − 1 sin


2

θ) 1 = 1 r


2

1 cos 12 θ,




=− ,




=− =−


f


r


f


rf


θ


θ


θ


22 4 24θ


2

2

2

2

sin cos




==,




==


f


r


r


f


r


f


r


f


r


22


2


22


2


2

22

cos θθcos










=


2

2

2

2

0


f


x


f


y




=− ,




=−


f


y


y


f


y


22


2

2



=,




=


f


x


x


f


x


22


2

2









=
















2

2

2

2

2

22

2

2

f 11


x


f


y


f


r


r


f


r
r

f


θ




=
















2

2

2

2

2

22

2

2

2

f


y


f


r


r


f


r
r

f


sin


cos cos


θ


θθ


θ


−−






∂∂










21


2

sin cosθθ


rrθθ


ff


r


=
















cos +


sin sin sin


2

2

2

22

2

2

2

2


θ


θθ


θ


f θ


r


r


f


r


r


f ccosθ


rrθθ


ff


r


1


2





∂∂










−−









∂∂






sin


sin cos


θ cos sin


θθ


θ


θ


θ


θ


r


f


r


f


rr


f


r


2

∂∂











2

2

f


θ


=












∂∂






cos cos


sin sin


θθ


θ


θ


θ


θ


2

22

2

f


rr


f


r


f


r








=


















cos cos


sin sin


θθ co


θ


θ


θ


r θ


f


rr


f


r


ss


sin


θ


θ


θ













f


rr


f




=
















2

2

f


x


rr


f


rr


cos


sin


cos


sin


θ


θ


θ


θ


θ ∂∂









f


θ

Free download pdf