9.10 The double integral 283
9.10 The double integral
The double integral can be defined as the limit of a (double) sum in the same
way as the Riemann integral was defined in Section 5.4. Letf(x,y)by a continuous
function of xand yin a rectangular region of the xy-plane, fora 1 ≤ 1 x 1 ≤ 1 bandc 1 ≤ 1 y 1 ≤ 1 d
(Figure 9.12).
Divide the intervalx 1 = 1 a 1 → 1 binto msubintervals of width∆x
r
1 = 1 x
r
1 − 1 x
r− 1
and the
intervaly 1 = 1 c 1 → 1 dinto nsubintervals of width∆y
s
1 = 1 y
s
1 − 1 y
s− 1
; that is, divide the
rectangle into small rectangles of area∆A
rs
1 = 1 ∆x
r
∆y
s
. The integral (9.53) is then
defined as the limit
(9.54)
(when the limit exists).
The double summation (9.54) can be performed in either order: either as
(9.55)
wherev
r
is the sum over the elements in a vertical strip and the second sum is over
the vertical strips, or as
(9.56)
whereh
s
is the sum over the elements in a horizontal strip and the second sum is over
the horizontal strips. These two orders of summation correspond to the two orders of
integration in (9.53).
Just as the integral in one variable was interpreted in Section 5.4 as the area under
the curve, the double integral can be interpreted as the ‘volume under the surface’;
fx y x y h y
rs r
r
m
s
s
n
s
(),=
=
=
∑∑
∆∆ ∆
11
ss
s
n
=
∑
1
fx y y x x
rs s
s
n
r
r
m
r
(),=
=
=
∑∑
∆∆ ∆
11
v
rr
r
m
=
∑
1
ZZ
c
d
a
b
rs r s
r
fxydxdy fx y x y
m
n
( ),=lim ( ,)
→
→
=
∞
∞
∆∆
1
mm
s
n
∑∑
= 1
y
x
a
b
∆ x
r
c
d
∆ y
s
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.............
.............
.............
.............
.............
.............
.........
..........
.........
..........
.........
..........
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
................................
................................
................................
................................
.
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
.
.
..
..
...
...
..
...
..
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
.
........................................................................................................................................................................................................................................
........................................................................................................................................................................................................................................
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
....
.....
......
....
.....
......
....
.....
......
....
.....
......
....
.....
......
.................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.................................................................................................................................................................................................................................................................................................................................................................................................... ................................................................................
Figure 9.12