The Chemistry Maths Book, Second Edition

(Grace) #1

9.11 Change of variables 285


and the integral (the sum of horizontal strips) is


(9.58b)


EXAMPLE 9.30Evaluate the integral off(x,y) 1 = 111 + 12 xy


over the region R bounded by the liney 1 = 1 xand the curve


y 1 = 1 x


2

(or ), as in Figure 9.14. Calculate also the


area of R.


(i) using equation (9.58a) withg(x) 1 = 1 x


2

andh(x) 1 = 1 x,


(ii) using equation (9.58b) withp(y) 1 = 1 yand


The area of the region R is


0 Exercises 66–68


9.11 Change of variables


We saw in Section 6.3 that one of the principal general methods of evaluating


integrals is the method of substitution whereby, given a definite integral over the


variable x, a new variable of integration can be introduced by setting


xxu dx


dx


du


=,() =du


Adydxxxdx


x

x

=












=−


( )


ZZ Z =


0

1

0

1

2

2

1


6


=+








=+




















ZZ


0

1

2

0

1

xxy dy y


y

y

yyyydy


23

1


4


−−








=


Ixydxdy


y

y

=+












ZZ


0

1

() 12


qy y() ,=


=+








=+−−












ZZ


0

1

2

0

1

32

2

yxy dx xx x x


x

x

55

1


4








dx=


Ixydydx


x

x

=+












ZZ


0

1

2

() 12


xy=


IfxydA fxydx


c

d

py

qy

=,= ,












ZZZ


R

() ()


()

()

ddy


y


x


0


1


1










R


y=x


y=x


2

........................................................................................

.

..

...

..

.

..

...

..

.

..

...

..

.

..

...

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

...

..

..

.

.......

.......

.......

.......

.......

.......

.......

.......

........

......

.......

........

.......

.......

.......

.......

.......

.......

.......

.......

........

......

.......

........

.......

.......

.......

.......

.......

.......

.......

.......

........

......

.......

........

.......

.......

.......

.......

.......

.......

.......

.......

........

......

.......

........

.......

.......

.......

.......

.......

.......

.......

.......

........

......

.......

........

.......

.......

.......

.......

......

.................................................................

............

.............

...........

..........

...........

.........

.........

.........

........

........

........

.......

.......

........

.......

.......

.......

.......

......

........

......

......

........

......

......

.......

......

......

.......

......

......

......

......

......

......

......

......

......

......

.......

.....

......

......

......

......

......

.....

......

......

......

.....

......

......

.....

.......

.....

.....

.......

.....

.....

......

......

.....

.....

Figure 9.14

Free download pdf