9.11 Change of variables 285
and the integral (the sum of horizontal strips) is
(9.58b)
EXAMPLE 9.30Evaluate the integral off(x,y) 1 = 111 + 12 xy
over the region R bounded by the liney 1 = 1 xand the curve
y 1 = 1 x
2
(or ), as in Figure 9.14. Calculate also the
area of R.
(i) using equation (9.58a) withg(x) 1 = 1 x
2
andh(x) 1 = 1 x,
(ii) using equation (9.58b) withp(y) 1 = 1 yand
The area of the region R is
0 Exercises 66–68
9.11 Change of variables
We saw in Section 6.3 that one of the principal general methods of evaluating
integrals is the method of substitution whereby, given a definite integral over the
variable x, a new variable of integration can be introduced by setting
xxu dx
dx
du
=,() =du
Adydxxxdx
x
x
=
=−
( )
ZZ Z =
0
1
0
1
2
2
1
6
=+
=+
ZZ
0
1
2
0
1
xxy dy y
y
y
yyyydy
23
1
4
−−
=
Ixydxdy
y
y
=+
ZZ
0
1
() 12
qy y() ,=
=+
=+−−
ZZ
0
1
2
0
1
32
2
yxy dx xx x x
x
x
55
1
4
dx=
Ixydydx
x
x
=+
ZZ
0
1
2
() 12
xy=
IfxydA fxydx
c
d
py
qy
=,= ,
ZZZ
R
() ()
()
()
ddy
y
x
0
1
1
R
y=x
y=x
2
........................................................................................
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
...
..
..
.
...
..
..
.
...
..
..
.
...
..
..
.
...
..
..
.
...
..
..
.
...
..
..
.
.......
.......
.......
.......
.......
.......
.......
.......
........
......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
........
......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
........
......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
........
......
.......
........
.......
.......
.......
.......
.......
.......
.......
.......
........
......
.......
........
.......
.......
.......
.......
......
.................................................................
............
.............
...........
..........
...........
.........
.........
.........
........
........
........
.......
.......
........
.......
.......
.......
.......
......
........
......
......
........
......
......
.......
......
......
.......
......
......
......
......
......
......
......
......
......
......
.......
.....
......
......
......
......
......
.....
......
......
......
.....
......
......
.....
.......
.....
.....
.......
.....
.....
......
......
.....
.....
Figure 9.14