The Chemistry Maths Book, Second Edition

(Grace) #1

9.11 Change of variables 287


The integral (9.59) is then


EXAMPLE 9.31Evaluate the integral off(r, 1 θ) 1 = 1 e


−r

2

sin


2

1 θover (i) the area of a


circle of radius aand (ii) the whole plane.


(i)


Because the integrand is the product of a function of rand a function of θ,


e


−r

2

sin


2

θr 1 = 1 (e


−r

2

r)(sin


2

θ)


and because the limits of integration are constants, the double integral can be


factorized:


Because


and, using the substitutionu 1 = 1 r


2

, du 1 = 12 rdr,


Therefore,


(ii) Lettinga 1 → 1 ∞,


0 Exercises 69–71


ZZ


0

2

0

2

2

2


π

π



erdrd


−r

sin θθ=


Ie


a

=−


(
)


π


2


1


2

ZZ


00

0

2

2

2

1


2


1


2


1


2


1


a

r

a

uu

a

erdr edu e


−−−

==−








=−ee


−a

( )


2

ZZ


0

2

2

0

2

1


2


12


1


2


1


2


2


ππ

sin θθdd=− =−( cos )θ θ θ sin θ












=


0

2 π

π


sin ( cos ),


2 1

2

θθ=− 12


Ierdr d


a

r



ZZ


00

2

2

2

π

sin θθ


ZZZ


R

e dA e rdrd


r

a

−−r

=


22

2

0

2

0

2

sin θθsin θ


π

I e rdrd d e rdr e


a

r

a

ra

==×=−


−−−

ZZ Z Z


0

2

00

2

0

21


ππ

θθ π (aa+











Free download pdf