9.11 Change of variables 287
The integral (9.59) is then
EXAMPLE 9.31Evaluate the integral off(r, 1 θ) 1 = 1 e
−r
2
sin
2
1 θover (i) the area of a
circle of radius aand (ii) the whole plane.
(i)
Because the integrand is the product of a function of rand a function of θ,
e
−r
2
sin
2
θr 1 = 1 (e
−r
2
r)(sin
2
θ)
and because the limits of integration are constants, the double integral can be
factorized:
Because
and, using the substitutionu 1 = 1 r
2
, du 1 = 12 rdr,
Therefore,
(ii) Lettinga 1 → 1 ∞,
0 Exercises 69–71
ZZ
0
2
0
2
2
2
π
π
∞
erdrd
−r
sin θθ=
Ie
a
=−
(
)
−
π
2
1
2
ZZ
00
0
2
2
2
1
2
1
2
1
2
1
a
r
a
uu
a
erdr edu e
−−−
==−
=−ee
−a
( )
2
ZZ
0
2
2
0
2
1
2
12
1
2
1
2
2
ππ
sin θθdd=− =−( cos )θ θ θ sin θ
=
0
2 π
π
sin ( cos ),
2 1
2
θθ=− 12
Ierdr d
a
r
=×
−
ZZ
00
2
2
2
π
sin θθ
ZZZ
R
e dA e rdrd
r
a
−−r
=
22
2
0
2
0
2
sin θθsin θ
π
I e rdrd d e rdr e
a
r
a
ra
==×=−
−−−
ZZ Z Z
0
2
00
2
0
21
ππ
θθ π (aa+