9.12 Exercises 289
because the value of a definite integral does not depend on the symbol used for the
variable of integration. Then
and the double integral is over the whole xy-plane. A transformation to polar
coordinates then gives
Therefore,
(9.64)
9.12 Exercises
Section 9.1
1.Find the value of the functionf(x, y) 1 = 12 x
2
1 + 13 xy 1 − 1 y
2
1 + 12 x 1 − 13 y 1 + 14 for
(i)(x, y) 1 = 1 (0, 1) (ii)(x,y) 1 = 1 (2, 0) (iii)(x,y) 1 = 1 (3, 2)
2.Find the value off(r, θ, φ) 1 = 1 r
2
sin
2
1 θ 1 cos
2
φ 1 + 121 cos
2
1 θ 1 − 1 r
3
sin 12 θ 1 sin 1 φfor
(i)(r, θ, φ) 1 = 1 (1, π 2 2, 0) (ii)(r, θ, φ) 1 = 1 (2, π 2 4, π 2 6) (iii)(r, θ, φ) 1 = 1 (0, π, π 2 3).
Section 9.3
Find and for
3.z 1 = 12 x
2
1 − 1 y
2
4.z 1 = 1 x
2
1 + 12 y
2
1 − 13 x 1 + 12 y 1 + 13 5.z 1 = 1 e
2 x+ 3 y
6.z 1 = 1 sin(x
2
1 − 1 y
2
) 7.z 1 = 1 e
x
2
cos(xy)
Find all the nonzero partial derivatives of
8.z 1 = 1 x
2
1 − 13 x
2
y 1 + 14 xy
2
9.u 1 = 13 x
2
1 + 1 y
2
1 + 12 xy
3
Find all the first and second partial derivatives of
10.z 1 = 12 x
2
y 1 + 1 cos(x 1 + 1 y) 11.z 1 = 1 sin(x 1 + 1 y)e
x−y
Show thatf
xy
1 = 1 f
yx
for
12.f 1 = 1 x
3
1 − 13 x
2
y 1 + 1 y
3
13.f 1 = 1 x
2
cos(y 1 − 1 x) 14.
Show thatf
xyz
1 = 1 f
yzx
1 = 1 f
zxy
for
15.f 1 = 1 cos(x 1 + 12 y 1 + 13 z) 16.f 1 = 1 xye
yz
17.Ifr 1 = 1 (x
2
1 + 1 y
2
1 + 1 z
2
)
122
find
18.Ifφ 1 = 1 f(x 1 − 1 ct) 1 + 1 g(x 1 + 1 ct), where cis a constant, show that.
19.Ifxyz 1 + 1 x
2
1 + 1 y
2
1 + 1 z
2
1 = 10 , find.
z
y
x
∂
∂
∂
∂
=
∂
∂
2
22
2
2
φφ 1
xct
∂
∂
,
∂
∂
,
∂
∂
r
x
r
y
r
z
.
f
xy
xy
=
22
∂
∂
z
y
∂
∂
z
x
Z
0
2
2
∞
edx
−x
=
π
Ierdrdderdr
2 rr
0
2
00
2
0
1
4
1
44
22
== =
−−
ZZ Z Z
ππ
π
∞∞
θθ
Iedxedy e
2 xy xy
1
4
1
4
22 2
==
−
−
−
−
−−
−+
ZZ ZZ
∞
∞
∞
∞
∞
∞
∞
∞
(
22
)
dxdy