The Chemistry Maths Book, Second Edition

(Grace) #1

9.12 Exercises 291


Section 9.6


37.Givenz 1 = 1 x


2

1 + 12 xy 1 + 13 y


2

, wherex 1 = 1 (1 1 + 1 t)


122

andy 1 = 1 (1 1 − 1 t)


122

, find by


(i)substitution,(ii)the chain rule (9.21).


38.Givenu 1 = 1 e


x−y

, wherex 1 = 121 cos 1 tandy 1 = 13 t, use the chain rule to find.


39.Givenu 1 = 1 ln(x 1 + 1 y 1 + 1 z), wherex 1 = 1 a 1 cos 1 t,y 1 = 1 b 1 sin 1 t,andz 1 = 1 ct, find.


40.Givenz 1 = 1 ln(2x 1 + 13 y),x 1 = 1 a 1 cos 1 θ,y 1 = 1 a 1 sin 1 θ,use the chain rule to find.


41.Givenf 1 = 1 sin(u 1 + 1 v), wherev 1 = 1 cos 1 u, (i)find , (ii)ifu 1 = 1 e


−t

, find.


42.Ifz 1 = 1 x


5

y 1 − 1 sin 1 y, find.


43.For the van der Waals gas, use the expressions for and from Exercise 20


to find


44.Ifz 1 = 1 x


2

1 + 1 y


2

andu 1 = 1 xy, find by (i)substitution, (ii)equation (9.30).


45.Givenz 1 = 1 x 1 sin 1 yandu 1 = 1 x


2

1 + 12 xy 1 + 13 y


2

, find.


46.IfU 1 = 1 U(V,T)andp 1 = 1 p(V, T)are functions of Vand Tand ifH 1 = 1 U 1 + 1 pV, show that


.


47.Givenx 1 = 1 au 1 + 1 bvandy 1 = 1 bu 1 − 1 av, where aand bare constants, (i)iffis a function of xand


y, express and in terms of and , (ii)iff 1 = 1 x


2

1 + 1 y


2

, find


and in terms of uand v.


48.Givenu 1 = 1 x


n

1 + 1 y


n

andv 1 = 1 x


n

1 − 1 y


n

, where nis a constant,


(i)show that. (ii)Iffis a function of xand y, express


and in terms of and. Hence, (iii)iff 1 = 1 u


2

1 − 1 v


2

, find


and in terms of xand y.


49.Ifx 1 = 1 au 1 + 1 bv, y 1 = 1 bu 1 − 1 av, andfis a function of xand y(see Exercise 47(i)), show that


(i) , (ii).



∂∂


=















+−




22

2

2

2

22

2

f


u


ab


f


x


f


y


ba


f


v


()


xxy∂










=+


















2

2

2

2

22

2

2

2

2

f


u


f


ab


f


x


f


v y


()


x


f


y










y


f


x










u


∂f









v


v










f


u


x


f


y










y


f


x










v


v


∂ v
















 ==













x


u


u


x


y


y


y ux


1


2









u


∂f









v


v










f


u


x


f


y










y


f


x










u


∂f









v


v










f


u


pV T


H


T


U


T


U


V


p



















=
































p


V


T


u


z


y










u


z


y










Vn


p


T


,










Tn


V


p


,










p


V


T


,n










z


y


x










df


dt


df


du


dz



du


dt


du


dt


dz


dt

Free download pdf