The Chemistry Maths Book, Second Edition

(Grace) #1

9.12 Exercises 293


63.Evaluate on the circle with parametric equationsx 1 = 1 cos 1 θ,


y 1 = 1 sin 1 θ, (i)from A(1, 0) to B( 0, 1) and (ii)around a complete circle (θ 11 = 101 → 12 π).


(iii)Confirm that the differential 2 xy dx 1 + 1 (x


2

1 − 1 y


2

) dyis exact.


Sections 9.9


64.Evaluate the integral and show that the result is independent of


the order of integration.


65.Evaluate the integral


Sections 9.10


Evaluate the integral and sketch the region of integration:









  1. (i)Show from a sketch of the region of integration that


,


(ii)evaluate the integral.


Section 9.11


Transform to polar coordinates and evaluate:









  1. ZZ


0


0


e x dx dy


−+()xy

22

2

ZZ


−−

−+









exydxdy


222 xy 3

2212

()

ZZ ()


0

1

0

1

2

2

2







x

()xxydydx


ZZ ZZ Z Z


0

2

24

22

3

0

1

0

22

3

4

0

y

yx

x dx dy x dy dx



−−


=+


()/

00

42

3

()/x

xdydx


+

ZZ


00

2

22

a ax

xy dydx



ZZ


0

22

22

x

x

()x y dyd+ x


ZZ


00

2

π
R

r

edrd



cos sinθθ θ.


ZZ


0

3

1

2

22

()x y xy dxdy+


Z


C

2


22

xy dx x y dy+−








()

Free download pdf