The Chemistry Maths Book, Second Edition

(Grace) #1

296 Chapter 10Functions in 3 dimensions


The conversion from cartesian coordinates to spherical polar coordinates makes use


of the following relations:


(10.2)


in which the inverse functions have their principal values (see Section 3.5).


EXAMPLE 10.2Find the spherical polar coordinates of the point(x, y, z) 1 = 1 (−1, 2, −3).


r


2

1 = 1 x


2

1 + 1 y


2

1 + 1 z


2

1 = 1 14, 1 r 1 = 1


θ 1 = 1 cos


− 1

(z 2 r) 1 = 11 ≈ 1 143.3°


φ 1 = 1 tan


− 1

(y 2 x) 1 + 1 π 1 = 1 tan


− 1

(−2) 1 + 1 π 1 ≈ 1 116.6°


0 Exercises 4–9


10.3 Functions of position


A function of position, or field, is a function of the three coordinates within some


region of three-dimensional space. Let the region V(for volume) in Figure 10.3


represent, for example, a body with non-uniform temperature; the temperature is


a function of position,


T 1 = 1 f(x, 1 y, 1 z)


Then, if the cartesian coordinates of the point Pare


(x


p

, y


p

, z


p

), the temperature at this point is


T


p

1 = 1 f(x


p

, y


p

, z


p

)


For example, iff(x, 1 y, 1 z) 1 = 1 z


2

1 − 1 x


2

1 − 1 y


2

then


T


p

1 = 1 z


2

p

1 − 1 x


2

p

1 − 1 y


2

p

The temperature at a point cannot depend on the particular system of coordinates


used to specify the position of the point. If the spherical coordinates at P are (r


p

, 1 θ


p

, 1 φ


p

)


then, by equations (10.1),


T


p

1 = 1 r


p

2

1 cos


2

1 θ


p

1 − 1 r


p

2

1 sin


2

1 θ


p

1 cos


2

1 φ


p

1 − 1 r


p

2

1 sin


2

1 θ


p

1 sin


2

1 φ


p

1 = 1 r


p

2

(cos


2

1 θ


p

1 − 1 sin


2

1 θ


p

)


cos ( )




1

314


14


rxyz


z


r


y


x


2222 1

1

=++, =








,=










θφcos


tan iif


if


x


y


x


x










+<












0


0


1

tan π






..

.....

.....

.....

......

....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

......

.....

....

......

.....

.....

.....

.....

.....

.....

..

p


.....................................................................................................................................................................................................

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

.

...
..
...
....
..
...
....
..
...
....
...
..
....
...
..
....
...
..
....
...
..
....
...
...
...
...
.

z


y


x


V


.....

.........

...........

...............

.....................

................................................................

........................

...................

..............

............

............

..........

.........

..........

........

........

........

.......

.......

.......

.......

......

......

.......

.....

......

......

.....

......

.....

.....

.....

.....

.....

......

....

.....

......

.....

.....

.....

......

.....

.......

......

.......

........

........

.........

............

..............

.....................

...............................................................

........................

.................

................

............

...........

...........

..........

........

..........

.......

........

........

.......

......

........

......

......

......

......

.....

......

......

.....

.....

.....

.....

......

.....

....

......

.....

.....

.....

.....

.....

......

......

......

.......

......

.......

.....

Figure 10.3

Free download pdf