The Chemistry Maths Book, Second Edition

(Grace) #1

10.4 Volume integrals 299


The physical interpretation of an orbital is in terms of an electron probability density;


for an electron in orbital ψthe quantity


|ψ(r, 1 θ, 1 φ)|


2

dv (10.6)


is interpreted as the probability of finding the electron in the volume elementdvat


position (r, 1 θ, 1 φ). The square modulus,|ψ|


2

1 = 1 ψψ*, is used because wave functions are


in general complex functions. The probability of finding the electron in a region V


is then the volume integral.


10.4 Volume integrals


A triple, or three-fold, integral has the general form


(10.7)


where Vis a region in xyz-space. When the variables are the coordinates of a point in


ordinary space the integral is often called a volume integral. If the limits of integration


in (10.7) are constants then the region Vis a rectangular box of sidesx


2

1 − 1 x


1

, y


2

1 − 1 y


1

,


z


2

1 − 1 z


1

.


EXAMPLE 10.5Evaluate the integral of the functionf(x, 1 y, 1 z) 1 = 111 + 1 xyzover the


rectangular box of sides a, b, cshown in Figure 10.5.


The integral (10.7) is


Then


(i)


This is a general result; the integral is the volume of the region V.


(ii)


ZZZZ ZZZ


V

xyz d xyz dx dy dz x dx y dy z


c b aab c

v==


000 0 0 0

ddz


Z


V

dv


ZZZZ ZZZ


V

d dxdydz dx dy dz


abc


c b aab c

v==


=××=


000 0 0 0

VV


ZZZ


VVV

f x y z d(),, vv= d + xyz dv


ZZZZ


V

f x y z d f x y z dxdydz


z

z

y

y

x

x

(),, v= (),,


1

2

1

2

1

2

Z


V

2

||ψ dv


...............................................................................................................

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

.

..
...
....
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
....
...
.

......
.......
......
.

..

..

..

...

..
...
..
..
..

...
......
..

..

...

..

..

o
y

x


z


a


b


c


.............................................................................

...

....

....

...

...

....

....

...

....

...

....

....

...

....

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

. .......................................................... ..................
...
....
....
...
....
...
....
....
...
...
....
....
...
.....
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...


.............................................................................

...

....

....

...

...

....

....

...

....

...

....

....

...

..

.
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...

Figure 10.5

Free download pdf