10.4 Volume integrals 301
EXAMPLE 10.6Find the volume∆vin Figure 10.6 and show that it reduces to the
approximate expression (10.10) for small ∆-values.
When∆ris small enough, the terms in(∆r)
2
and(∆r)
3
can be neglected. When∆θis
small,
cos(θ 1 + 1 ∆θ) 1 = 1 cos 1 θ 1 cos 1 ∆θ 1 − 1 sin 1 θ 1 sin 1 ∆θ 1 ≈ 1 cos 1 θ 1 − 1 sin 1 θ∆θ
sincecos 1 ∆θ 1 → 11 andsin 1 ∆θ 1 → 1 ∆θas∆θ 1 → 10. Therefore, for small ∆-values,
∆v 1 ≈ 1 r
2
sin 1 θ∆r 1 ∆θ 1 ∆φ
We note that this does not provide a proof of (10.9), since the volume element is used
for the construction of the volume integral.
EXAMPLE 10.7Evaluate the integral of the functionf(r, 1 θ, 1 φ) 1 = 111 + 1 r
2
1 cos
2
1 θ 1 sin
2
1 φ
over a sphere of radius aand centre at the origin.
The integral can be evaluated in two parts, as in Example 10.5:
The ranges of integration arer 1 = 101 → 1 a, θ 1 = 101 → 1 π, andφ 1 = 101 → 12 π. Then
(i)
and this is the volume of the sphere.
(ii)
0 Exercises 18, 19
=××
a
5
5
2
3
π
=ZZ Z
0
4
0
2
0
2
2
a
rdr d d
ππ
cos sinθθθ sin φφ
ZZZZ
V
rd r
a
22 2
0
2
00
42 2
cos sinθθφφv= cos sin sinθ
ππ
ddr d dθ φ
==ZZ Z ××=
0
2
00
2
3
3
3
22
4
3
a
rdr d d
a
a
ππ
sinθθ φ ππ
ZZZZ
V
drdrdd
a
v=
0
2
00
2
ππ
sinθθφ
ZZZ
VVV
fdvv=+d r dv
22 2
cos sinθ φ
=+ +
−+
rrrr r
223
1
3
∆∆ ∆() () cos cos( )θθθ∆
∆φ
==
+∆ +∆ +∆
+
ZZ Z
r
rr
r
rr
rdr d d
r
2
3
3
θ
θθ
θθ
φ
φφ
sin φ
∆
−
++
θ
θθ
θ
φ
φφ
φ
∆∆
cos
∆v=
+∆ +∆ +∆
ZZZ
φ
φφ
θ
θθ
θθφ
r
rr
rdrdd
2
sin