10.4 Volume integrals 301
EXAMPLE 10.6Find the volume∆vin Figure 10.6 and show that it reduces to the
approximate expression (10.10) for small ∆-values.
When∆ris small enough, the terms in(∆r)
2and(∆r)
3can be neglected. When∆θis
small,
cos(θ 1 + 1 ∆θ) 1 = 1 cos 1 θ 1 cos 1 ∆θ 1 − 1 sin 1 θ 1 sin 1 ∆θ 1 ≈ 1 cos 1 θ 1 − 1 sin 1 θ∆θ
sincecos 1 ∆θ 1 → 11 andsin 1 ∆θ 1 → 1 ∆θas∆θ 1 → 10. Therefore, for small ∆-values,
∆v 1 ≈ 1 r
2sin 1 θ∆r 1 ∆θ 1 ∆φ
We note that this does not provide a proof of (10.9), since the volume element is used
for the construction of the volume integral.
EXAMPLE 10.7Evaluate the integral of the functionf(r, 1 θ, 1 φ) 1 = 111 + 1 r
21 cos
21 θ 1 sin
21 φ
over a sphere of radius aand centre at the origin.
The integral can be evaluated in two parts, as in Example 10.5:
The ranges of integration arer 1 = 101 → 1 a, θ 1 = 101 → 1 π, andφ 1 = 101 → 12 π. Then
(i)
and this is the volume of the sphere.
(ii)
0 Exercises 18, 19
=××
a
55
2
3
π
=ZZ Z
0402022ardr d d
ππcos sinθθθ sin φφ
ZZZZ
Vrd r
a22 2020042 2cos sinθθφφv= cos sin sinθ
ππddr d dθ φ
==ZZ Z ××=
02002333
22
4
3
ardr d d
a
a
ππsinθθ φ ππ
ZZZZ
Vdrdrdd
av=
02002ππsinθθφ
ZZZ
VVVfdvv=+d r dv
22 2cos sinθ φ
=+ +
−+
rrrr r
2231
3
∆∆ ∆() () cos cos( )θθθ∆
∆φ
==
+∆ +∆ +∆+ZZ Z
rrrrrrrdr d d
r
233
θθθθθ
φφφsin φ
∆
−
++θθθθ
φφφφ
∆∆cos
∆v=
+∆ +∆ +∆ZZZ
φφφθθθθθφ
rrrrdrdd
2sin