The Chemistry Maths Book, Second Edition

(Grace) #1

10.4 Volume integrals 301


EXAMPLE 10.6Find the volume∆vin Figure 10.6 and show that it reduces to the


approximate expression (10.10) for small ∆-values.


When∆ris small enough, the terms in(∆r)


2

and(∆r)


3

can be neglected. When∆θis


small,


cos(θ 1 + 1 ∆θ) 1 = 1 cos 1 θ 1 cos 1 ∆θ 1 − 1 sin 1 θ 1 sin 1 ∆θ 1 ≈ 1 cos 1 θ 1 − 1 sin 1 θ∆θ


sincecos 1 ∆θ 1 → 11 andsin 1 ∆θ 1 → 1 ∆θas∆θ 1 → 10. Therefore, for small ∆-values,


∆v 1 ≈ 1 r


2

sin 1 θ∆r 1 ∆θ 1 ∆φ


We note that this does not provide a proof of (10.9), since the volume element is used


for the construction of the volume integral.


EXAMPLE 10.7Evaluate the integral of the functionf(r, 1 θ, 1 φ) 1 = 111 + 1 r


2

1 cos


2

1 θ 1 sin


2

1 φ


over a sphere of radius aand centre at the origin.


The integral can be evaluated in two parts, as in Example 10.5:


The ranges of integration arer 1 = 101 → 1 a, θ 1 = 101 → 1 π, andφ 1 = 101 → 12 π. Then


(i)


and this is the volume of the sphere.


(ii)


0 Exercises 18, 19


=××


a


5

5


2


3


π


=ZZ Z


0

4

0

2

0

2

2

a

rdr d d


ππ

cos sinθθθ sin φφ


ZZZZ


V

rd r


a

22 2

0

2

00

42 2

cos sinθθφφv= cos sin sinθ


ππ

ddr d dθ φ


==ZZ Z ××=


0

2

00

2

3

3

3


22


4


3


a

rdr d d


a


a


ππ

sinθθ φ ππ


ZZZZ


V

drdrdd


a

v=


0

2

00

2

ππ

sinθθφ


ZZZ


VVV

fdvv=+d r dv


22 2

cos sinθ φ


=+ +










−+



rrrr r


223

1


3


∆∆ ∆() () cos cos( )θθθ∆









∆φ


==





+∆ +∆ +∆

+

ZZ Z


r

rr

r

rr

rdr d d


r


2

3

3


θ

θθ

θθ


φ

φφ

sin φ























++

θ

θθ

θ


φ

φφ

φ


∆∆

cos


∆v=


+∆ +∆ +∆

ZZZ


φ

φφ

θ

θθ

θθφ


r

rr

rdrdd


2

sin

Free download pdf