The Chemistry Maths Book, Second Edition

(Grace) #1

10.5 The Laplacian operator 305


of electromagnetic theory) and quantum mechanics (as in Schrödinger’s wave


mechanics, see Chapter 14).


EXAMPLE 10.10Evaluate ∇


2

fforf(r) 1 = 1 e


−r

in (i) spherical polar coordinates and


(ii) cartesian coordinates.


(i) Becausef(r)is a function of the radial coordinate only it follows that


Then


(ii) In cartesian coordinates,


Then, by the chain rule,


The derivatives with respect to yand zare obtained in the same way. Then


so that, becausex


2

1 + 1 y


2

1 + 1 z


2

1 = 1 r


2

,


We note that the use of cartesian coordinates in this case naturally involves, via


the chain rule, a transformation to spherical polar coordinates.


0 Exercises 25–27


∇= + =−+








2 −

2

2

22


f 1


r


df


dr


df


dr


r


e


r

∇=
















=−


++





2

2

2

2

2

2

2

222

3

3


f


f


x


f


y


f


z


r


xyz


r


()













++










df


dr


xyz


r


df


dr


222

2

2

2



=




=,




=










f


x


df


dr


r


x


x


r


df


dr


f


x


x


x


r


df


dr


2

2

==− +


1


2

3

2

2

2

2

r


df


dr


x


r


df


dr


x


r


df


dr


rxyz


r


x


x


r


r


y


y


r


r


z


z


r


=++ ,




=,




=,




() =


222122

∇=
















2

2

2

2

2

2

2

f


f


x


f


y


f


z


∇= + = − =−








2 −− −

2

2

22


1


2


f


df


dr


r


df


dr


e


r


e


r


e


rr r



=,




=,




==−,




==



fff


r


df


dr


e


f


r


df


dr


r

θ φ


00


2

2

2

2

ee


−r
Free download pdf