10.6 Other coordinate systems 311
EXAMPLE 10.14The hydrogen molecule
In the method of ‘linear combinations of atomic orbitals’ (LCAO) for the ground
state of the hydrogen molecule, the simplest form of the occupied molecular orbital is
ψ 1 = 1 C(1s
A
1 + 11 s
B
), where (in atomic units) and
are normalized 1 sorbitals centred on the protons at Aand B(see Figure 10.10). C is a
constant chosen to normalize the orbital :. Thus
The integrals S
AA
and S
BB
are the normalization integrals for the 1 sorbital, as in
Example 10.8, and equal unity. Then. To evaluate the overlap integral
we use confocal elliptic coordinates (ξ, 1 η, 1 φ). Then, ifR 1 = 12 ais the bond length,
and the volume element is
The volume integral over all space is then
=−
==−
+
=
−
=
R
eddd
R
3
0
2
1
1
1
2
0
2
8 π
ππ
ZZ Z ZZ
φη ξ
ξ
φ
ξξηφ
∞
ηηξ
ξ
ηξηφ
=−
+
=
−
1
1
1
2
Z
∞
eddd
R
Sed
R
e
R
R
AB
==
−
==−
+
=
−
1
8
3
0
2
1
1
1
2
ππ
π
ZZZZ
ξ
φη ξ
ξ
ξ
v
∞
( −−ηξηφ
2
)ddd
dv
R
=−ddd
3
22
8
()ξη ξηφ
ξη=
=
rr −
R
rr
R
AB AB
,
Sed
rr
AB
AB
=
−+
1
π
Z
()
v
CS=+121 ()
AB
=++
CS S S
2
2
AA BB AB
1
11
2
2
2
22
=+
=++
−− −−
ZZ
ππ
π
eed
C
ee
rr rr
AB AB
v eed
−+rr
()
()
AB
v
Zψ
2
dv= 1
11 se
r
B
B
=
−
11 se ()π
r
A
A
=
−
()π
..................................................................................................................................................................................................................................................................................................................................................................................
.
...
...
..
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
....
..
...
..
...
..
...
..
...
..
...
..
...
..
..
...
...
..
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
..
.
......
......
........
.......
......
..
...
..
...
..
...
....
...
..
...
..
...
..
o
z
x
..
..
...
..
...
..
...
...
...
...
..
...
....
...
...
....
...
....
....
.....
....
.....
.....
.....
......
......
.......
........
........
..........
.............
...............
.......................... ..................... ..........................
...............
.............
.........
.........
........
......
......
.......
.....
.....
.....
....
....
.....
...
....
....
...
...
...
...
...
...
...
..
...
...
..
...
...
..
...
..
..
...
...
..
...
...
..
...
...
...
....
...
...
....
...
....
....
.....
....
.....
.....
.....
......
......
.......
........
.........
.........
.............
................
......................................................................
................
.............
..........
........
........
.......
......
......
.....
.....
.....
.....
....
....
....
...
....
...
...
....
...
...
...
..
...
...
..
...
...
..
..
..
P
r
B
r
A
A B
aa
- •
......
............
.............
..............
............
.............
..............
............
.............
..............
............
.............
..............
............
.............
..............
............
.............
..............
............
.............
..............
............
.............
..............
............
.............
..............
..............
......
.....
.....
.....
.....
.....
......
....
.....
......
.....
.....
.....
.....
.....
......
....
.....
......
.....
.....
.....
.....
.....
......
.....
....
...
Figure 10.10