The Chemistry Maths Book, Second Edition

(Grace) #1

312 Chapter 10Functions in 3 dimensions


Then, separating variables,


0 Exercises 40, 41


10.7 Exercises


Section 10.2


Find the cartesian coordinates (x, y, z) of the points whose spherical polar coordinates are:


1.(r, 1 θ, 1 φ) 1 = 1 (1, 1 0, 1 0) 2.(r, 1 θ, 1 φ) 1 = 1 (2, 1 π 2 2, 1 π 2 2) 3.(r, 1 θ, 1 φ) 1 = 1 (2, 12 π 2 3, 13 π 2 4)


Find the spherical polar coordinates (r, 1 θ, 1 φ) of the points:


4.(x, 1 y, 1 z) 1 = 1 (1, 1 0, 1 0) 5.(x, 1 y, 1 z) 1 = 1 (0, 1 1, 1 0) 6.(x, 1 y, 1 z) 1 = 1 (1, 1 2, 1 2)


7.(x, 1 y, 1 z) 1 = 1 (1, 1 −4, 1 −8) 8.(x, 1 y, 1 z) 1 = 1 (−2, 1 −3, 1 6) 9.(x, 1 y, 1 z) 1 = 1 (−3, 1 4, 1 −12)


Section 10.3


Express in spherical polar coordinates:


10.x


2

1 − 1 y


2

11.(x


2

1 + 1 y


2

) 2 z


2


  1. 2 z


2

1 − 1 x


2

1 − 1 y


2

13.Express in spherical polar coordinates:


(i)(x


2

1 + 1 y


2

1 + 1 z


2

)


− 122

, (ii)


Section 10.4


Find the total mass of a mass distribution of densityρin region V of space:


14.ρ 1 = 1 x


2

1 + 1 y


2

1 + 1 z


2

, V: the cube 01 ≤ 1 x 1 ≤ 1 1, 0 1 ≤ 1 y 1 ≤ 1 1, 0 1 ≤ 1 z 1 ≤ 11


15.ρ 1 = 1 xy


2

z


3

, V: the box 01 ≤ 1 x 1 ≤ 1 a, 0 1 ≤ 1 y 1 ≤ 1 b, 0 1 ≤ 1 z 1 ≤ 1 c


16.ρ 1 = 1 x


2

, V: the region 11 − 1 y 1 ≤ 1 x 1 ≤ 1 1, 0 1 ≤ 1 y 1 ≤ 1 1, 0 1 ≤ 1 z 1 ≤ 12


17.ρ 1 = 1 e


−(x+y+z)

, V: the infinite regionx 1 ≥ 1 0, y 1 ≥ 1 0, z 1 ≥ 10


18.ρ 1 = 1 x


2

1 + 1 y


2

1 + 1 z


2

, V: the sphere of radius a, centre at the origin



  1. V: the sphere of radius a, centre at the origin


20.ρ 1 = 1 r


3

e


−r

, V: all space


21.The 2 sorbital of the hydrogen atom is. Show that the


integral of over all space is unity.


22.The 3 p


z

orbital of the hydrogen atom isψ


3 p

z

1 = 1 C(6 1 − 1 r)re


−r 23

1 cos 1 θ(in atomic units)


where Cis a constant. Find the value of Cthat normalizes the 3 p


z

orbital.


ψ


2

2

s

ψ


2

0

3

0

2

1


42


2


s

ra

a


=−ra e



π


() 2


2

0

ρ


θ φ


=


sin cos


,


22

r




++



x


()xyz


22212

=++


( )



13


2

RR e


R

=×× ++


( )






















Re


R


RR


3 R

3

2

8


22 2 2


π


π 22


2


3


π××































e


R


R

S


R


dded d


R

AB

=


+



+

3

0

2

1

1

1

2

0

2

1

8 π


ππ

ZZZ ZZ


φη ξξ φ


ξ

∞1 1

2

1

ηη ξ


ξ

ded


R

Z













Free download pdf