The Chemistry Maths Book, Second Edition

(Grace) #1

10.7 Exercises 313


23.Calculate the average distance from the nucleus of an electron in the 2 sorbital


(see Exercise 21).


24.Calculate the average value ofr


2

for the 3 p


z

orbital (see Exercise 22).


Section 10.5


Find∇


2

f:


25.f 1 = 1 x


2

y


3

z


4

26.r


n

e


−ar


  1. 28.e


−r 23

1 sin 1 θ 1 sin 1 φ 29.xze


−r 22

30.Iff 1 = 1 (2 1 − 1 r)e


−r 22

show that


31.Iff 1 = 1 ze


− 3 r 22

show that


32.Iff 1 = 1 xye


−r

show that


33.Show that where ais an arbitrary number, satisfies∇


2

f 1 = 1 a


2

f.


Show that the following functions satisfy the Laplace equation:



  1. 2 x


3

1 − 13 x(y


2

1 + 1 z


2

) 35. 36.r


n

1 sin


n

1 θ 1 cos 1 nφ,n 1 = 1 1, 1 2, 1 3,1=


37.The d’Alembertian operator is


where x, y, zare coordinates, tis the time, and cis the speed of light. Show that if the


functionf(x, y, z)satisfies Laplace’s equation then the functiong(x, 1 y, 1 z, 1 t) 1 = 1 f(x, 1 y, 1 z)e


ikct

satisfies the equation


Section 10.6


38.What are the parametric equations of a left-handed helix in (i) cartesian coordinates,


(ii) cylindrical polar coordinates?


39.Integrate the functionf 1 = 1 y


2

z


3

over the cylindrical region of radius a, betweenz 1 = 10 and


z 1 = 11 , and symmetric about the z-axis.


Use confocal elliptic coordinates, φ, to integrate the following


functions over all space:










e


r


−+()rr

cos


AB

B

2

φ


e


r


−+()rr

AB

A

ξη=






,=



,


rr


R


rr


R


AB AB




22

gkg=.





2

2

2

2

2

2

22

2

2

1


=


















xyzct∂


cos


sin


2


22

φ


r θ


fr


e


r


ar

() , =


∇+ =


2

6


f


f


r


f.


∇+ =


2

69


4


f


f


r


f


.


∇+ =


2

2


4


f


f


r


f


.


e


r


−r
Free download pdf