10.7 Exercises 313
23.Calculate the average distance from the nucleus of an electron in the 2 sorbital
(see Exercise 21).
24.Calculate the average value ofr
2
for the 3 p
z
orbital (see Exercise 22).
Section 10.5
Find∇
2
f:
25.f 1 = 1 x
2
y
3
z
4
26.r
n
e
−ar
- 28.e
−r 23
1 sin 1 θ 1 sin 1 φ 29.xze
−r 22
30.Iff 1 = 1 (2 1 − 1 r)e
−r 22
show that
31.Iff 1 = 1 ze
− 3 r 22
show that
32.Iff 1 = 1 xye
−r
show that
33.Show that where ais an arbitrary number, satisfies∇
2
f 1 = 1 a
2
f.
Show that the following functions satisfy the Laplace equation:
- 2 x
3
1 − 13 x(y
2
1 + 1 z
2
) 35. 36.r
n
1 sin
n
1 θ 1 cos 1 nφ,n 1 = 1 1, 1 2, 1 3,1=
37.The d’Alembertian operator is
where x, y, zare coordinates, tis the time, and cis the speed of light. Show that if the
functionf(x, y, z)satisfies Laplace’s equation then the functiong(x, 1 y, 1 z, 1 t) 1 = 1 f(x, 1 y, 1 z)e
ikct
satisfies the equation
Section 10.6
38.What are the parametric equations of a left-handed helix in (i) cartesian coordinates,
(ii) cylindrical polar coordinates?
39.Integrate the functionf 1 = 1 y
2
z
3
over the cylindrical region of radius a, betweenz 1 = 10 and
z 1 = 11 , and symmetric about the z-axis.
Use confocal elliptic coordinates, φ, to integrate the following
functions over all space:
e
r
−+()rr
cos
AB
B
2
φ
e
r
−+()rr
AB
A
ξη=
,=
−
,
rr
R
rr
R
AB AB
22
gkg=.
2
2
2
2
2
2
22
2
2
1
=
∂
∂
∂
∂
∂
∂
−
∂
xyzct∂
cos
sin
2
22
φ
r θ
fr
e
r
ar
() , =
∇+ =
2
6
f
f
r
f.
∇+ =
2
69
4
f
f
r
f
.
∇+ =
2
2
4
f
f
r
f
.
e
r
−r