The Chemistry Maths Book, Second Edition

(Grace) #1

11.4 Separable equations in chemical kinetics 325


If the initial concentration of Ais[A]


0

, at timet 1 = 10 , thenc 1 = 1 ln[A]


0

and the solution


of the differential rate equation is the integrated rate equation


ln[A] 1 = 1 −kt 1 + 1 ln[A]


0

(11.34)


A plot ofln[A]against tis a straight line (Figure 11.1)


whose slope is −kand whose intercept with theln[A]axis


isln[A]


0

.


The more conventional expression for the integrated rate


equation is obtained from (11.34) by taking the exponential


of each side,


[A] 1 = 1 [A]


0

1 e


−kt

(11.35)


and shows that the first-order process is an example of


exponential decay.


The half-life


The half-lifeτ


122

of an exponential decay is the interval in which the amount of


reactant is halved:


or, from (11.35),


Therefore and, taking logs,


0 Exercise 29


(2) The second-order process: 2A 1 → 1 products


The rate equation is


(11.36)


or,


(11.37)


dx


dt


=− 2 kx


2

v=− =


1


2


2

d


dt


k


[]


[]


A


A


τ


12

2


=


ln


.


k


e


−k

=


τ

12

12


[] []


()

AA


00

12

1


2


ee


kt

kt

−+


=


τ

xt()()+=τ xt


12

1

2

...

..

...

...

..

..

...

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

.

0


ln[A]


0





−k


t


ln[A]


.......

......

.......

.......

......

........

......

.......

.......

.......

......

.......

.......

......

........

......

........

......

.......

.......

......

.......

.......

.......

......

........

......

.......

.......

......

.......

.......

.......

......

........

......

.......

.......

......

.......

.......

.......

......

........

......

.......

.......

....

Figure 11.1

Free download pdf