326 Chapter 11First-order differential equations
Separation of the variables and integration gives
If x
0
is the initial concentration of reactant thenc 1 = 112 x
0
and
(11.38)
or
(11.39)
Aplot of 12 [A]against tis a straight line (Figure 11.2)
whose slope is 2 kand whose intercept with the vertical axis
is 12 [A]
0
.
(3) The second-order process: A 1 + 1 B 1 → 1 products
The rate equation is
(11.40)
Let the initial concentrations of Aand Bbe[A]
0
1 = 1 aand[B]
0
1 = 1 b, respectively, and
let[A] 1 = 1 a 1 −xand[B] 1 = 1 b 1 −xat time t. The rate equation is then
(11.41)
Two cases need to be distinguished.
(a)The initial concentrations of Aand Bare equal;[A]
0
1 = 1 [B]
0
,a 1 = 1 b.
The rate equation (11.41) is
(11.42)
and, separating the variables and integrating,
(11.43)
Thenc 1 = 112 a 1 = 112 [A]
0
and the integrated rate equation is
(11.44)
11
0
[] []AA
−=kt
dx
ax
kdt
ax
kt c
()
[]
−
=,
−
==+
2
11
A
dx
dt
=−ka x()
2
−
−
== − −
da x
dt
dx
dt
ka x b x
()
()()
v=− =− =
d
dt
d
dt
k
[] []
[][]
AB
AB
11
2
12
0
0
0
[] []
[]
[]
AA []
A
A
A
−=, =
kt
kt
11
2
0
xx
−=kt
−= , = +
dx
x
kdt
x
kt c
2
2
1
2
0
1 /[A]
0
2 k
t
1 /[A]
...
.......
.......
........
.......
........
........
.......
.......
........
.......
.......
.........
.......
........
.......
.......
........
.......
........
........
.......
.......
........
.......
........
........
.......
.......
........
.......
.......
.........
.......
.......
........
.......
.......
........
.....
Figure 11.2