12.5 The harmonic oscillator 349
EXAMPLE 12.10The vibrations of diatomic molecules
The vibrations of a diatomic molecule are often modelled in terms of the Morse
potential
(12.30)
where (Figure 12.2) Ris the distance between the
nuclei,R
e
is the distance at equilibrium (the equi-
librium bond length), D
e
is the dissociation energy
of the molecule and ais a constant (the vibrations of
the molecule can be visualized in terms of a ball
rolling forwards and backwards in the ‘potential
well’ in Figure 12.2).
A stable molecule in its ground or low-lying excited
vibrational states undergoes only small displace-
ments,R 1 − 1 R
e
, from equilibrium. Then, expanding the
potential-energy functionV(R) as a power series in
(R 1 − 1 R
e
),
(12.31)
≈ 1 a
2
D
e
(R 1 − 1 R
e
)
2
The force acting between the nuclei of the molecule is (see Section 5.7, equation
(5.57)),
(12.32)
Therefore, for small displacements, differentiation of (12.31) gives
F 1 ≈ 1 − 2 a
2
D
e
(R 1 − 1 R
e
) (12.33)
Ifk 1 = 12 a
2
D
e
andx 1 = 1 (R 1 − 1 R
e
), the force isF 1 ≈ 1 −kx, and the vibrations of the molecule
are (approximately) simple harmonic.
Equation (12.29) can be written in the standard form (12.3) of a homogeneous linear
equation with constant coefficients,
(12.34)
dx
dt
k
m
x
2
2
+= 0
F
dV
dR
=−
VDaRR aRR=−−−+
ee e
2233
()()
VR D e
aR R
()
()
=−
−−
e
e
1
2
....................................................................................................................................................................................................................................
.
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
...
..
...
..
...
..
...
..
...
.
............
........
..
.....
........
...
.
..
..
..
...
..
...
...
..
...
...
.
.
...
...
..
...
...
.
R
V(R)
R
e
D
e
0
......................................
..
..
...
.
..
..
...
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
...
..
.
..
..
...
......
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....
......
....
.....
.....
.....
.....
.....
.....
....
.....
.....
.....
.....
.....
....
......
....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
......
.....
.....
......
.....
......
...
....
...
...
...
....
...
....
...
....
....
....
...
.....
....
....
.....
.....
.....
......
......
......
.......
.......
........
............
.............
............
.........
.........................
............
........
........
........
........
.......
........
......
.......
........
.......
......
........
.......
.......
........
.......
.......
........
........
.......
.........
.......
........
..........
........
.........
..........
.........
..........
............
...........
............
...............
..............
................
..........
Figure 12.2