The Chemistry Maths Book, Second Edition

(Grace) #1

12.5 The harmonic oscillator 349


EXAMPLE 12.10The vibrations of diatomic molecules


The vibrations of a diatomic molecule are often modelled in terms of the Morse


potential


(12.30)


where (Figure 12.2) Ris the distance between the


nuclei,R


e

is the distance at equilibrium (the equi-


librium bond length), D


e

is the dissociation energy


of the molecule and ais a constant (the vibrations of


the molecule can be visualized in terms of a ball


rolling forwards and backwards in the ‘potential


well’ in Figure 12.2).


A stable molecule in its ground or low-lying excited


vibrational states undergoes only small displace-


ments,R 1 − 1 R


e

, from equilibrium. Then, expanding the


potential-energy functionV(R) as a power series in


(R 1 − 1 R


e

),


(12.31)


≈ 1 a


2

D


e

(R 1 − 1 R


e

)


2

The force acting between the nuclei of the molecule is (see Section 5.7, equation


(5.57)),


(12.32)


Therefore, for small displacements, differentiation of (12.31) gives


F 1 ≈ 1 − 2 a


2

D


e

(R 1 − 1 R


e

) (12.33)


Ifk 1 = 12 a


2

D


e

andx 1 = 1 (R 1 − 1 R


e

), the force isF 1 ≈ 1 −kx, and the vibrations of the molecule


are (approximately) simple harmonic.


Equation (12.29) can be written in the standard form (12.3) of a homogeneous linear


equation with constant coefficients,


(12.34)


dx


dt


k


m


x


2

2

+= 0


F


dV


dR


=−


VDaRR aRR=−−−+








ee e

2233

()()


VR D e


aR R

()


()

=−








−−

e


e

1


2

....................................................................................................................................................................................................................................

.

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

...

..

...

..

...

..

...

..

...

.

............
........
..

.....

........

...

.

..

..

..

...

..
...
...
..
...
...
.

.
...
...
..
...
...
.

R


V(R)


R


e


D


e


0


......................................

..
..
...
.

..
..
...
.

..
...
..
.

..
...
..
.

..
...
..
.

..
...
..
.

..
...
..
.

..
..

...

......

.....

.....

......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

......

....

.....

.....

.....

.....

.....

.....

....

.....

.....

.....

.....

.....

....

......

....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

......

.....

.....

.....

.....

......

.....

.....

......

.....

......

...

....

...

...

...

....

...

....

...

....

....

....

...

.....

....

....

.....

.....

.....

......

......

......

.......

.......

........

............

.............

............

.........

.........................

............

........

........

........

........

.......

........

......

.......

........

.......

......

........

.......

.......

........

.......

.......

........

........

.......

.........

.......

........

..........

........

.........

..........

.........

..........

............

...........

............

...............

..............

................

..........

Figure 12.2

Free download pdf