362 Chapter 12Second-order differential equations. Constant coefficients
By Table 12.1, case 1 , the choice of particular integral should bey
p
1 = 1 ke
− 2 x
, but this
is already a solution of the homogeneous equation. By prescription (a)therefore,
we use
y
p
1 = 1 kxe
− 2 x
Then
y′
p
1 = 1 ke
− 2 x
1 − 12 kxe
− 2 x
, y
p
′′ 1 = 1 − 4 ke
− 2 x
1 + 14 kxe
− 2 x
so that
y
p
′′ 1 + 13 y′
p
111 + 12 y
p
1 = 1 −ke
− 2 x
and this is equal toy
p
1 = 13 e
− 2 x
ifk 1 = 1 − 3. Theny
p
1 = 13 xe
− 2 x
and the general solution is
y(x) 1 = 1 y
h
(x) 1 + 1 y
p
(x) 1 = 1 c
1
e
−x
1 + 1 c
2
e
− 2 x
1 − 13 xe
− 2 x
0 Exercises 33, 34
EXAMPLE 12.15Find the general solution of the equationy′′ 1 − 14 y′ 1 + 14 y 1 = 1 e
2 x
.
By Example 12.4, the characteristic equation of the homogeneous equation has the
double rootλ 1 = 12 , and the complementary function is
y
h
(x) 1 = 1 (c
1
1 + 1 c
2
x)e
2 x
In this case, by prescription (b), the functiony
p
1 = 1 ke
2 x
is multiplied byx
2
. Then
y
p
1 = 1 kx
2
e
2 x
, y′
p
1 = 12 kxe
2 x
1 + 12 kx
2
e
2 x
, y
p
′′ 1 = 12 ke
2 x
1 + 18 kxe
2 x
1 + 14 kx
2
e
2 x
so that
y
p
′′ 1 − 14 y′
p
111 + 14 y
p
1 = 12 ke
2 x
and this is equal toe
2 x
whenk 1 = 1122. The general solution is therefore
0 Exercise 35
0 Exercises 36–38
yx y x y x c cx x e
hp
x
() () ()=+=++
12
22
1
2