380 Chapter 13Second-order differential equations. Some special functions
(b)
In this case, bothP
1(x)andP
3(x)are odd functions so that the orthogonality of
the functions is a new property, not a consequence of even 2 odd parity.
0 Exercise 19
The corresponding property of the associated Legendre functions is
(13.26)
In addition whenl 1 = 1 l′,
(13.27)
and this result is used to construct the set of normalizedassociated Legendre
functions (and normalized Legendre polynomials whenm 1 = 10 ),
(13.28)
with property
(13.29)
Whenx 1 = 1 cos 1 θthese functions form part of the solutions of the Schrödinger
equation for the hydrogen atom (Section 14.6).
EXAMPLE 13.9Show that (i)P
11is orthogonal toP
31, (ii)P
22is orthogonal toP
23.
(i)
IPxPxdx==−−xxd
−+−+ZZ
11113111223
2
() () ( )( 151 )xx
Px x Px x x
112123121221
3
2
() ( ) , () ( ) (=− = − 151 −)
Z
−+, ′,,′==
= ′
≠ ′
111
0
ΘΘ
lm l m llxxdx
ll
ll
() () δ
if
if
Θ
lm lmx
llm
lm
Px
,||=
+−!
+!
()
()(||)
(||)
()
21
2
Z
−+||( )
=
+!
−!
1122
21
Pxdx
l
lm
lm
lm()
()
(||)
(||)
Z
−+||′||=≠′
11PxPxdx 0 ll
lmlm() () when
ZZ
−+−+−+=−=
11131142111
2
53
1
2
P x P x dx() () (x x dx) xxx
531
2
−=−00 0
=