The Chemistry Maths Book, Second Edition

(Grace) #1

410 Chapter 14Partial differential equations


14.7 The vibrating string


We consider an elastic string, such as a guitar string, of


length land uniform linear density ρthat is stretched


and fixed at both ends under tension T. The string is


distorted transversely (pulled sideways), released and


allowed to vibrate (Figure 14.6). The transverse dis-


placement of the string is then a function of position x


and time t,


y 1 = 1 y(x, 1 t) (14.85)


and when the vibrations are small the motion of the string is described by the wave


equation


(14.86)


wherev


2

1 = 1 T 2 ρ. The boundary and initial conditions on the solutions of the equation


are


y(0, t) 1 = 1 y(l, t) 1 = 10 (14.87)


for no displacement at the ends of the string, and


y(x, 1 0) 1 = 1 f(x), (14.88)


for the initial displacement and velocity (functions).


Separation of variables


We write the displacement function (a wave function) as the product


y(x, 1 t) 1 = 1 F(x) 1 × 1 G(t) (14.89)


Substitution in the wave equation and division byy 1 = 1 FGthen gives


(14.90)


Both sides of the equation must be constant so that, with separation constant−λ


2

, the


problem in two variables reduces to the boundary value problem


F(0) 1 = 1 F(l) 1 = 10 (14.91)


dF


dx


F


2

2

2

+=,λ 0


11


2

22

2

2

F


dF


dx G


dG


dt


=


v


t

y


t


gx


=









=


0

()




=




2

22

2

2

y 1


x


y


v t


..

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

..

...

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

..

...

..

..

...

...

.

.............................................................................................................................................................................................................................................
........
.

...

.........

....

...
...
...
..
...
...
.

.
...
...
..
...
...
.

x


y


••


.
...
...
..
..
...
..
...
...
..
..
...
..
...
......

...

..

...

...

...

..

...

...

..

...

..

..

...

..

..
...
...
.

.
...
...
.

.

......

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

......

.....

.....

.....

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

......

.....

.....

.....

......

.....

.....

......

.....

.....

......

......

.....

......

......

....

....

....

.....

......

..........

..................................

.......

........

.......

......

......

......

......

......

.....

......

......

.....

......

......

.....

......

......

.....

.....

......

.....

......

.....

......

.....

......

.....

.....

......

.....

......

.....

......

.....

......

.....

.....

......

.....

......

......

.....

.....

......

......

.....

......

......

.....

.......

.....

......

......

......

......

......

.......

......

........

......

..............

.....

.........................

........

.......

.......

.......

........

.......

......

.......

.......

.....

Figure 14.6

Free download pdf