410 Chapter 14Partial differential equations
14.7 The vibrating string
We consider an elastic string, such as a guitar string, of
length land uniform linear density ρthat is stretched
and fixed at both ends under tension T. The string is
distorted transversely (pulled sideways), released and
allowed to vibrate (Figure 14.6). The transverse dis-
placement of the string is then a function of position x
and time t,
y 1 = 1 y(x, 1 t) (14.85)
and when the vibrations are small the motion of the string is described by the wave
equation
(14.86)
wherev
2
1 = 1 T 2 ρ. The boundary and initial conditions on the solutions of the equation
are
y(0, t) 1 = 1 y(l, t) 1 = 10 (14.87)
for no displacement at the ends of the string, and
y(x, 1 0) 1 = 1 f(x), (14.88)
for the initial displacement and velocity (functions).
Separation of variables
We write the displacement function (a wave function) as the product
y(x, 1 t) 1 = 1 F(x) 1 × 1 G(t) (14.89)
Substitution in the wave equation and division byy 1 = 1 FGthen gives
(14.90)
Both sides of the equation must be constant so that, with separation constant−λ
2
, the
problem in two variables reduces to the boundary value problem
F(0) 1 = 1 F(l) 1 = 10 (14.91)
dF
dx
F
2
2
2
+=,λ 0
11
2
22
2
2
F
dF
dx G
dG
dt
=
v
t
y
t
gx
=
∂
∂
=
0
()
∂
∂
=
∂
∂
2
22
2
2
y 1
x
y
v t
..
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
..
...
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
..
...
..
..
...
...
.
.............................................................................................................................................................................................................................................
........
.
...
.........
....
...
...
...
..
...
...
.
.
...
...
..
...
...
.
x
y
••
.
...
...
..
..
...
..
...
...
..
..
...
..
...
......
...
..
...
...
...
..
...
...
..
...
..
..
...
..
..
...
...
.
.
...
...
.
.
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
.....
.....
.....
......
.....
.....
......
.....
.....
......
.....
.....
......
.....
......
.....
.....
.....
......
.....
.....
......
.....
.....
......
......
.....
......
......
....
....
....
.....
......
..........
..................................
.......
........
.......
......
......
......
......
......
.....
......
......
.....
......
......
.....
......
......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
.....
......
.....
......
.....
.....
......
.....
......
......
.....
.....
......
......
.....
......
......
.....
.......
.....
......
......
......
......
......
.......
......
........
......
..............
.....
.........................
........
.......
.......
.......
........
.......
......
.......
.......
.....
Figure 14.6