412 Chapter 14Partial differential equations
in space of the first few of these normal modes are illustrated in Figure 14.7 (see also
Figure 12.6 for the particle in a box).
The nth mode has n 1 − 11 nodesbetween the end points; that is, points of zero
displacement that do not move; the solutions (14.98) represent standing waves.
The complete solution
Each of the normal modes contains two constants,A
nandB
n, that are to be determined
by the initial conditions (14.88); that is, by the way the motion is initiated. It is possible
to choose the initial conditions so that the actual motion is one of the normal modes;
for example, the nth mode is produced if
(14.99)
In general however, a single mode will not satisfy the initial conditions; the motion is
not a pure normal mode but is a mixture or superposition of normal modes.
To obtain the solution for the general case, we invoke the principle of superposition
discussed in Section 12.2; ify
1, 1 y
2, 1 y
3,1=are solutions of a homogeneous linear
equation then any linear combination of them is also a solution. Thus, for each
normal mode we have
(14.100)
so that, if
y 1 = 1 c
1y
11 + 1 c
2y
21 + 1 c
3y
31 +1- (14.101)
then
(14.102)
∂
∂
=
∂
∂
22222y 1
x
y
v t
∂
∂
=
∂
∂
222221
y
x
y
t
nnv
tnny
t
gx B
nx
l
=∂
∂
==
0() ω sin
π
yx f x A
nx
l
n() () sin,= 0 =
π
......................................................................................................................................................................
..
...
..
...
..
...
..
...
..
....
...
..
............n=1
fundam ental
....................................................................................................................
........
.....
.....
.....
....
.....
....
....
...
....
....
...
....
....
...
....
...
....
....
.... ..
....
...
.
...
...
....
....
.....
...
.
.
....
...
.
......
..
............................................................. ...................................................................................................................................................................
...
..
...
..
...
..
...
..
...
..
....
...
..
...................................................
..
...
..n=2
firstovertone
..............................................................................
.....
...
....
...
...
...
...
...
...
...
...
..
...
...
...
...
...
..
...
...
...
...
..
...
...
...
..
...
...
...
...
...
..
....
..
...
....
...
...
....
...
.....
............................................................................
...
...
....
...
....
...
.....
...
....
.....
....................................................................................
...
......
...
....
...
....
...
...
.
......................................................................................................................................................................
..
...
..
...
..
...
..
...
..
....
...
..
...................................................
..
...
.....
..
...
..
...
..
...
..
...
..
....
...
..
............n=3
secon dovertone
....................................................................
....
...
...
..
...
...
...
...
..
...
...
..
...
...
..
...
...
..
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
..
....
...
...
......................................................................................................................................
...
....
..
...
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
... ..
...
...
.
..
...
..
....
...
....
...
...........................................................................
..
...
....
...
...
...
...
......
...
...
...
...
...
...
....
..
...
....
....
..
................................Figure 14.7
