16.5 The scalar (dot) product 457
Proof
To show the equivalence of the definitions (16.30) and (16.31), we apply the cosine
rule to the triangle in Figure 16.19:
(AB)
21 = 1 (OA)
21 + 1 (OB)
21 − 1 2(OA)(OB) 1 cos 1 θ 1 = 1 a
21 + 1 b
21 − 12 ab 1 cos 1 θ
The vector isb 1 − 1 a, and its length is given by
(AB)
21 = 1 (b
x1 − 1 a
x)
21 + 1 (b
y1 − 1 a
y)
21 + 1 (b
z1 − 1 a
z)
2= 1 (a
x21 + 1 a
y21 + 1 a
z2) 1 + 1 (b
x21 + 1 b
y21 + 1 b
z2) 1 − 1 2(a
xb
x1 + 1 a
yb
y1 + 1 a
zb
z)
= 1 a
21 + 1 b
21 − 1 2(a
xb
x1 + 1 a
yb
y1 + 1 a
zb
z)
Thereforeab 1 cos 1 θ 1 = 1 a
xb
x1 + 1 a
yb
y1 + 1 a
zb
z.
EXAMPLE 16.11Givena 1 = 1 (3, 1, −1)andb 1 = 1 (1, 2, −3)finda 1
·
1 b,b 1
·1 aand the
angle between the vectors.
By equation (16.31),
a 1
·
1 b 1 = 131 × 111 + 111 × 121 + 1 (−1) 1 × 1 (−3) 1 = 1 8, b 1
·
1 a 1 = 111 × 131 + 121 × 111 + 1 (−3) 1 × 1 (−1) 1 = 18
This example demonstrates that scalar multiplication is commutative,
a 1
·
1 b 1 = 1 b 1
·
1 a (16.32)
By equation (16.30), and the lengths of the vectors area 1 = 1 |a| 1 =
1
andb 1 = 1 |b| 1 =
1
. Therefore
0 Exercises 19–21
The sign of the scalar product is the sign of the cosine, so that the scalar product can
be positive, zero, or negative:
cosθθ=,=cos
≈. ≈
−8
154
8
154
0 8702
149.86°°
14
cosθ= , 11
ab 11
·ab
AB
....................b
a
θ
............................................................................................................................................................................................................................................................................
.............
..............
......
...
...............
.............
.............
..
..........
.........
........
..........
.........
........
..........
.........
........
..........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..........
........
.........
..........
........
.........
..........
........
.........
..........
........
.........
..............
.....
......
.......
......
......
......
..
.....................
.......................
θ<
π
2
,a
.
b> 0...............................................b
a
θ
............................................................................................................................................................................................................................................................................
.............
..............
......
...
...............
.............
.............
.
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
......
.....
....
..........
.....
.....
......
.....
......
.....
......
.
.....
.....
.....
......
.....
......
.....
......
.
θ=
π
2
,a
.
b=0.........................................................
......
....b
a
θ
............................................................................................................................................................................................................................................................................
.............
..............
......
...
...............
.............
.............
..
......
......
......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
......
......
......
.......
......
......
.......
......
......
.......
......
......
.......
......
......
......
......
......
..............
..........
.........
..........
.......
.....
.....
.....
.....
.....
.....
......
.....
...
θ>
π
2
,a
.
b< 0Figure 16.20