16.6 The vector (cross) product 463
In terms of cartesian base vectors
The unit vectors i, jand kform a right-handed system of vectors and have properties
i 1 z 1 j 1 = 1 kj 1 z 1 k 1 = 1 ik 1 z 1 i 1 = 1 j
(16.51)
i 1 z 1 i 1 = 10 j 1 z 1 j 1 = 10 k 1 z 1 k 1 = 10
The vector producta 1 z 1 bcan then be expressed in terms of cartesian components:
a 1 z 1 b 1 = 1 (a
x
i 1 + 1 a
y
j 1 + 1 a
z
k) 1 z 1 (b
x
i 1 + 1 b
y
j 1 + 1 b
z
k)
= 1 a
x
b
x
i 1 z 1 i 1 + 1 a
x
b
y
i 1 z 1 j 1 + 1 a
x
b
z
i 1 z 1 k 1 + 1 a
y
b
x
j 1 z 1 i 1 + 1 a
y
b
y
j 1 z 1 j
- 1 a
y
b
z
j 1 z 1 k 1 + 1 a
z
b
x
k 1 z 1 i 1 + 1 a
z
b
y
k 1 z 1 j 1 + 1 a
z
b
z
k 1 z 1 k
= 1 a
x
b
y
k 1 + 1 a
x
b
z
(−j) 1 + 1 a
y
b
x
(−k) 1 + 1 a
y
b
z
i 1 + 1 a
z
b
x
j 1 + 1 a
z
b
y
(−i)
(remembering that, for example,j 1 z 1 i 1 = 1 −i 1 z 1 j). Therefore
a 1 z 1 b 1 = 1 (a
y
b
z
1 − 1 a
z
b
y
)i 1 + 1 (a
z
b
x
1 − 1 a
x
b
z
)j 1 + 1 (a
x
b
y
1 − 1 a
y
b
x
)k (16.52)
This form of the vector product can be written, and more easily remembered, in the
form of a determinant (Chapter 17),
(16.53)
EXAMPLE 16.15Givena 1 = 1 (3, 1, −1)andb 1 = 1 (1, 2, −3), finda 1 z 1 b,b 1 z 1 a, and the
area|a 1 z 1 b|of the parallelogram defined by aand b.
By equation (16.52),
= 1 −i 1 + 18 j 1 + 15 k 1 = 1 (−1, 8, 5)
Also,b 1 z 1 a 1 = 1 −a 1 z 1 b 1 = 1 (1, −8, −5)
0 Exercises 31–40
Vector products are used for the description of surfaces in geometry, and in the
vector integral calculus for the evaluation of surface integrals. In mechanics, the
vector product is used for the description of properties associated with torque and
angular motion.
||ab 11 z =++=185 90
222
ab11 11z =×−−−×i
+−×−×−
13 12 1133()() () ()
+×−×
jk 3211
ab
ijk
11 11z =aaa
bbb
x yz
xyz