The Chemistry Maths Book, Second Edition

(Grace) #1

16.6 The vector (cross) product 463


In terms of cartesian base vectors


The unit vectors i, jand kform a right-handed system of vectors and have properties


i 1 z 1 j 1 = 1 kj 1 z 1 k 1 = 1 ik 1 z 1 i 1 = 1 j


(16.51)


i 1 z 1 i 1 = 10 j 1 z 1 j 1 = 10 k 1 z 1 k 1 = 10


The vector producta 1 z 1 bcan then be expressed in terms of cartesian components:


a 1 z 1 b 1 = 1 (a


x

i 1 + 1 a


y

j 1 + 1 a


z

k) 1 z 1 (b


x

i 1 + 1 b


y

j 1 + 1 b


z

k)


= 1 a


x

b


x

i 1 z 1 i 1 + 1 a


x

b


y

i 1 z 1 j 1 + 1 a


x

b


z

i 1 z 1 k 1 + 1 a


y

b


x

j 1 z 1 i 1 + 1 a


y

b


y

j 1 z 1 j



  • 1 a


y

b


z

j 1 z 1 k 1 + 1 a


z

b


x

k 1 z 1 i 1 + 1 a


z

b


y

k 1 z 1 j 1 + 1 a


z

b


z

k 1 z 1 k


= 1 a


x

b


y

k 1 + 1 a


x

b


z

(−j) 1 + 1 a


y

b


x

(−k) 1 + 1 a


y

b


z

i 1 + 1 a


z

b


x

j 1 + 1 a


z

b


y

(−i)


(remembering that, for example,j 1 z 1 i 1 = 1 −i 1 z 1 j). Therefore


a 1 z 1 b 1 = 1 (a


y

b


z

1 − 1 a


z

b


y

)i 1 + 1 (a


z

b


x

1 − 1 a


x

b


z

)j 1 + 1 (a


x

b


y

1 − 1 a


y

b


x

)k (16.52)


This form of the vector product can be written, and more easily remembered, in the


form of a determinant (Chapter 17),


(16.53)


EXAMPLE 16.15Givena 1 = 1 (3, 1, −1)andb 1 = 1 (1, 2, −3), finda 1 z 1 b,b 1 z 1 a, and the


area|a 1 z 1 b|of the parallelogram defined by aand b.


By equation (16.52),


= 1 −i 1 + 18 j 1 + 15 k 1 = 1 (−1, 8, 5)


Also,b 1 z 1 a 1 = 1 −a 1 z 1 b 1 = 1 (1, −8, −5)


0 Exercises 31–40


Vector products are used for the description of surfaces in geometry, and in the


vector integral calculus for the evaluation of surface integrals. In mechanics, the


vector product is used for the description of properties associated with torque and


angular motion.


||ab 11 z =++=185 90


222

ab11 11z =×−−−×i








+−×−×−





13 12 1133()() () ()







+×−×








jk 3211


ab


ijk


11 11z =aaa


bbb


x yz

xyz
Free download pdf