17.2 Determinants of order 3 477
and, expanding the second-order determinants,
D 1 = 1 a
11a
22a
331 − 1 a
11a
23a
321 − 1 a
21a
12a
331 + 1 a
21a
13a
321 + 1 a
31a
12a
231 − 1 a
31a
13a
22(17.11)
The solution of the system of three equations can then be expressed in terms of
third-order determinants as
(17.12)
whereD 1 ≠ 10 is the determinant of the coefficients, (17.10), and
(17.13)
EXAMPLE 17.2Use determinants to solve the equations
2 x 1 − 13 y 1 + 14 z 1 = 18
y 1 − 13 z 1 = 1 − 7
x+ 12 y 1 + 12 z 1 = 111
The determinant of the coefficients is, by equation (17.10),
= 121 × 181 − 101 × 1 (−14) 1 + 111 × 151 = 121
The determinantsD
1,D
2,andD
3are, by equations (17.13),
Thereforex 1 = 1 D
12 D 1 = 1 1,y 1 = 1 D
22 D 1 = 1 2,z 1 = 1 D
32 D 1 = 13.
0 Exercise 5
DD
12834
71 3
11 2 2
21
284
073
111 2
= 42
−
−−=,=−−=, DD
3238
017
1211
= 63
−
−=
D=
−
−=
−
−
−
−
−
234
013
122
2
13
22
0
34
22
1
34
13
D
ba a
ba a
ba a
D
aba
ab
11
12 132222333233211
11321=,=
222331 3 33311
12 121 22 231 32 3a
aba
D
aab
aab
aab
,=
x
D
D
x
D
D
x
D
D
112233=, = , =