The Chemistry Maths Book, Second Edition

(Grace) #1

17.2 Determinants of order 3 477


and, expanding the second-order determinants,


D 1 = 1 a


11

a


22

a


33

1 − 1 a


11

a


23

a


32

1 − 1 a


21

a


12

a


33

1 + 1 a


21

a


13

a


32

1 + 1 a


31

a


12

a


23

1 − 1 a


31

a


13

a


22

(17.11)


The solution of the system of three equations can then be expressed in terms of


third-order determinants as


(17.12)


whereD 1 ≠ 10 is the determinant of the coefficients, (17.10), and


(17.13)


EXAMPLE 17.2Use determinants to solve the equations


2 x 1 − 13 y 1 + 14 z 1 = 18


y 1 − 13 z 1 = 1 − 7


x+ 12 y 1 + 12 z 1 = 111


The determinant of the coefficients is, by equation (17.10),


= 121 × 181 − 101 × 1 (−14) 1 + 111 × 151 = 121


The determinantsD


1

,D


2

,andD


3

are, by equations (17.13),


Thereforex 1 = 1 D


1

2 D 1 = 1 1,y 1 = 1 D


2

2 D 1 = 1 2,z 1 = 1 D


3

2 D 1 = 13.


0 Exercise 5


DD


12

834


71 3


11 2 2


21


284


073


111 2


= 42



−−=,=−−=, DD


3

238


017


1211


= 63



−=


D=



−=











234


013


122


2


13


22


0


34


22


1


34


13


D


ba a


ba a


ba a


D


aba


ab


1

1
12 13

22223

33233

2

11
113

21

=,=


2223

31 3 33

3

11
12 1

21 22 2

31 32 3

a


aba


D


aab


aab


aab


,=


x


D


D


x


D


D


x


D


D


1

1

2

2

3

3

=, = , =

Free download pdf