The Chemistry Maths Book, Second Edition

(Grace) #1

38 Chapter 2Algebraic functions


To solve for x,


(i) multiply both sides of the equation by(cx 1 + 1 d): (cx 1 + 1 d)y 1 = 1 ax 1 + 1 b


(ii) expand the l.h.s.: cxy 1 + 1 dy 1 = 1 ax 1 + 1 b


(iii) subtract(ax 1 + 1 b)from both sides: cxy 1 + 1 dy 1 − 1 ax 1 − 1 b 1 = 10


(iv) collect the terms inx


1

and x


0

:(cy 1 − 1 a)x 1 + 1 (dy 1 − 1 b) 1 = 10


(v) subtract(dy 1 − 1 b)from both sides: (cy 1 − 1 a)x 1 = 1 −(dy 1 − 1 b)


(vi) divide both sides by(cy 1 − 1 a):


We note that step (vi) is not valid if(cy 1 − 1 a) 1 = 10 because division by zero has no


meaning. Such complications can normally be ignored.


This example demonstrates the type of algebraic manipulation routinely used in


the solution of real problems.


0 Exercises 26–29


EXAMPLE 2.10Ify 1 = 1 f(x) 1 = 1 x


2

1 + 11 , express xin terms of y.


We have


y 1 = 1 x


2

1 + 1 1,x


2

1 = 1 y 1 − 1 1,


yis a single-valued function of x, but xis a double-valuedfunction of y(except for


y 1 = 11 ); that is, for each real value ofy 1 > 11 there exist two real values of x(ify 1 < 11 then


xis complex).


Figure 2.4 shows how the graphs of the function and its inverse are related; graph (b)


is obtained from (a) by interchanging the xand yaxes, or by rotation around the line


x 1 = 1 y. Graph (b) also shows the double-valued nature of the inverse function.


xyfy=± − =



1


1

()


x


dy b


cy a


=− fy




=



()


()


()


1

............
........

...

........

.....

..

.....
..
...
...
..
...

...
..
...
...
..
...

..

....

..

.

....

...

....

....

...

....

.

..

....

..

.

....

...

.

...

....

...

....

.

...

...

..

..

...

...

.

....

...

....

...

.

...

....

.

..

....

..

.

....

...

.

...

....

...

....

.

..

....

..

..

...

...

.

...

....

....

...

o


1


y


x


x


y


x=y








..........

...........

..........

...........

..........

..........

..........

...........

..........

..........

...........

..........

..........

...........

..........

..........

...........

..........

...........

..........

...........

...........

..........

..........

............

..........

...........

...........

...........

..........

...........

..........

...........

...........

..........

...........

...........

..........

...........

............

..........

...........

............

............

...........

............

...........

...........

.............

...........

............

.............

.............

.............

................

................

...................

....................................................................

...................

................

................

.............

.............

..............

...........

...........

.............

...........

...........

............

............

...........

............

...........

..........

............

...........

..........

............

..........

..........

............

..........

..........

...........

...........

..........

............

..........

..........

............

..........

..........

............

..........

..........

...........

..........

..........

...........

..........

..........

...........

..........

..........

...........

..........

..........

...........

..........

..........

............

..........

..........

..........

(a )y=f(x)=x


2

+1


............
........

...

........

.....

.

..

..
..
...
..
...
...
..

.
..
...
..
...
...
..

..

....

..

.

....

...

....

....

...

....

.

..

....

..

.

....

...

.

...

....

...

....

.

...

...

..

..

...

...

.

....

...

....

...

.

...

....

.

..

....

..

.

....

...

.

...

....

...

....

.

..

....

..

..

...

...

.

...

....

....

...

o


1


y


x


x


−x


y


x=y










....................................

..........................................

.....................................

...................................

......................................

.................................

...............................

...................................

.............................

...............................

..........................

.........................

........................

.........................

.......................

.......................

...................

.................

.................

..................

...............

...............

.............

............

.............

...........

..........

..........

..........

..........

..........

...........

...........

.............

............

..............

................

...............

................

...................

..................

...................

........................

......................

.......................

...........................

.........................

...........................

...............................

..............................

...............................

....................................

................................

...................................

.......................................

.....................................

......................................

..............................

(b)x=f


− 1

(y)=±



y− 1


Figure 2.4

Free download pdf