17.2 Determinants of order 3 479
The minorM
21is
Similarly,
The complete expansion of the determinant in terms of its elements is therefore
−a
211 M
211 + 1 a
221 M
221 − 1 a
331 M
331 = 1 −a
211 (a
12a
331 − 1 a
13a
32)
- 1 a
221 (a
11a
331 − 1 a
13a
31) 1 − 1 a
231 (a
11a
321 − 1 a
12a
31)
and this is identical to the result (17.11) obtained by expansion along the first column.
EXAMPLE 17.4Find the value of the following determinant by expansion along
(a) the first row and (b) the third column:
(a) The expansion along the first row is
= 121 × 101 − 111 × 101 + 131 × 121 = 16
(b) The expansion along the third column is
0 Exercises 6–9
D=
−
−
3 −+=×=
42
11
00326
D=×
−
−×
−
+×
−
−
2
20
10
1
40
10
3
42
11
D=−
−
213
420
110
M
aa
aa
aa aa M
aa
2211 1331 3311 33 13 31 2311==−,=
11231 3211 32 12 31aa
=−aa aa
M
aa a
aa a
aa a
aa
aa
2111 12 1321 22 2331 32 3312
1332 3==
3312 33 13 32=−aa aa