The Chemistry Maths Book, Second Edition

(Grace) #1

17.4 The solution of linear equations 487


EXAMPLE 17.8Find the values of λfor which the following system of equations


has nonzero solution:


− 2 x+ y+ z= 1 λx


− 11 x 1 + 14 y 1 + 15 z= 1 λy


−x+ y = 1 λz


The equations can be written


(− 21 − 1 λ)x 1 + y + z = 10


− 11 x + 1 (4 1 − 1 λ)y 1 + 5 z = 10


−x + y + 1 (−λ)z 1 = 10


and have nonzero solution when


Therefore


= 1 (− 21 − 1 λ)[−λ(4 1 − 1 λ) 1 − 1 5] 1 − 1 [11λ 1 + 1 5] 1 + 1 [− 111 + 1 (4 1 − 1 λ)]


= 1 −λ


3

1 + 12 λ


2

1 + 1 λ 1 − 121 = 1 −(λ 1 − 1 1)(λ 1 + 1 1)(λ 1 − 1 2)


andD 1 = 10 whenλ 1 = 11 , − 1 , and 2.


For each of the nroots of the secular determinant there exists a solution of the secular


equations (17.38).


EXAMPLE 17.9Solve the Hückel molecular-orbital problem for the allyl radical


CH


2

CH CH


2

in terms of the Hückel parameters αand β:


(1) (α 1 − 1 E)c


1

1 + βc


2

= 10


(2) βc


1


  • 1 (α 1 − 1 E)c


2

1 + βc


3

= 10


(3) βc


2


  • 1 (α 1 − 1 E)c


3

= 10


D=− −






−−






−−



()2


45


1


11 5


1


11 4


11


λ


λ


λλ


λ


D=


−−


−−


−−


=


211


11 4 5


11


0


λ


λ


λ

Free download pdf