The Chemistry Maths Book, Second Edition

(Grace) #1

17.8 Exercises 497


Section 17.3


Evaluate:
















Section 17.4


Use Cramer’s rule to solve the systems of equations:



  1. 3 x 1 − 12 y 1 − 12 z 1 = 10 16. w 1 + 12 x 1 + 13 y 1 + 1 z 1 = 15


x 1 + 1 y 1 − 1 z 1 = 102 w 1 + 1 x 1 + 1 y 1 + 1 z 1 = 13


2 x 1 + 12 y 1 + 1 z 1 = 10 w 1 + 12 x 1 + 1 y 1 = 14


x 1 + 1 y 1 + 12 z 1 = 10



  1. (i)Show that the following equations have no solution unlessk 1 = 13 , (ii)solve for this


value of k.


2 x 1 − 1 y 1 + 1 z 1 = 12


3 x 1 + 1 y 1 − 12 z 1 = 11


x 1 − 13 y 1 + 14 z 1 = 1 k



  1. (i)Find kfor which the following equations have a nontrivial solution, (ii)solve for this


value of k.


kx 1 + 15 y 1 + 13 z 1 = 10


5 x 1 + 1 y 1 − 1 z 1 = 10


kx 1 + 12 y 1 + 1 z 1 = 10


Find (i)the values of λfor which the following systems of equations have nontrivial solutions,


(ii)the solutions for these values of λ.



  1. 2 x 1 + 1 y 1 = 1 λx 20. 3 x 1 + 1 y 1 = 1 λx 21. x 1 + 12 y 1 − 13 z 1 = 1 λx


x 1 + 12 y 1 = 1 λyx 1 + 13 y 1 + 1 z 1 = 1 λy 2 x 1 + 14 y 1 − 16 z 1 = 1 λy


y 1 + 13 z 1 = 1 λz −x 1 − 12 y 1 + 13 z 1 = 1 λz


Section 17.5


Use the properties of determinants to show that:














25.Differentiate the following determinant with respect to x:


12 3


456


789


2

345

678

xx


xxx


xxx


ab


cd


ab ab


cd cd


=


−+


−+


1


2


22 1


32 2


10 3


0



−−


=


36 3


21 5


12 1


0




=


−−




2617 5


0 3 22 17


00 4 12


00 0 6


11 0 0


32 2 3


21 1 2


5311





3400


1200


0031


0042


2013


3104


1 123


2210


Free download pdf