The Chemistry Maths Book, Second Edition

(Grace) #1

18.1 Concepts 501


EXAMPLE 18.1Rotation as a coordinate transformation


Consider a point P in the xy-plane, with coordinates(x, y)with respect to the coordinate


system Oxy. As discussed in Section 8.5, an anticlockwise rotation through angle θ


about the Ozaxis moves the point to position P′with coordinates(x′, y′), as in Figure


18.1, such that (equations (8.41))


x′ 1 = 1 x 1 cos 1 θ 1 − 1 y 1 sin 1 θ


y′ 1 = 1 x 1 sin 1 θ 1 + 1 y 1 cos 1 θ


(18.8)


An alternative way of interpreting these equations (the ‘passive’ instead of ‘active’


interpretation) is as the change of coordinates of the fixedpoint P when the


coordinate system itself undergoes a clockwiserotation through angle θ, from Oxy


to Ox′y′as in Figure 18.2.


The corresponding matrix equation in both cases is


(18.9)


and the transformation matrix


(18.10)


completely characterizes the coordinate transformation.


0 Exercises 1, 2


cos sin


sin cos


θθ


θθ











x


y


x


y












=














cos sin


sin cos


θθ


θθ









...

..

...

...

...

....

...

....

....

....
θ •





P(x,y)


P



(x



,y



)


o


x


y


.............
........

...

........

.....

..

..

..
...
..
...
...
..
..

.
...
..
...
...
..
..

..

..
.......
.....

.
...
...
...
...

...

..............

..............

................

..............

..............

................

..............

..............

................

..............

..............

...............

..............

..............

................

.............

.

......

......

......

.....

......

......

......

.....

......

......

......

......

.....

......

......

......

.....

......

......

.....

.......

.....

......

......

......

.....

......

......

.....

.......

.....

......

......

......

.....

......

......

.....

.......

.....

...

..

....

...

.....

...

..

....
...
...
...
...
...

...
..
..
...
...
..
...
...
..
...
...
...
.

θ



  • p(x,y)


x


y


x



y



.............
........

...

........

.....

..

..

..
...
..
...
...
..
..

.
...
..
...
...
..
..

.

......
...
...
..
...
..

.....
....
.....
..

...
.....

......

......

.

..

...

..

....

...

..

..
...
..

...

..

...

...

.

..

...

....

....

..

....

..

...

...

..

...

....

.

....

....

.

...

....

.

....

...

..

....

..

..

....

..

...

....

.

...

.....

....

....

.

....

...

..

...

...

..

....

..

...

....

.

...

....

.

....
...
.

..
...
...

...
...
..

.
....
...

...
...
..

.
...
...
.

..
...
...

....
...
.

..
...
...

...
...
..

.
...
....

...
...
..

.
...
...
.

..
...
...

..

...

..............

..............

................

..............

..............

................

..............

..............

................

..............

..............

...............

..............

..............

................

.............

Figure 18.1 Figure 18.2

Free download pdf