18.4 The inverse matrix 515
2.Transpose the matrix of cofactors:
The matrix™is called the adjointofA.
3.Divide the adjoint matrix by the determinant of A:
(18.45)
EXAMPLE 18.16The inverse of order 2
The matrix
has determinant det 1 A 1 = 1 a
11
a
22
1 − 1 a
12
a
21
, and the cofactors of its elements areC
11
1 = 1 a
22
,
C
12
1 = 1 −a
21
,C
21
1 = 1 −a
12
,C
22
1 = 1 a
11
. Then
so that
This is the same as formula (18.43).
0 Exercise 47
EXAMPLE 18.17Find the inverse of
A=−
−
213
420
110
.
A
−
=
−
−
−
1
11 22 12 21
22
12
21 11
1
aa aa
aa
aa
™==
−
−
CC
CC
aa
aa
11
21
12 22
22
12
21 11
A=
aa
aa
11
12
21 22
A
A
−
=
1
™
det
→
CC C
CC C
CC C
n
n
n
n
nn
11 21 1
12 22
2
1
2
=Â