The Chemistry Maths Book, Second Edition

(Grace) #1

18.5 Linear transformations 517


(18.47)


that represents the transformation of the vector with components(x


1

, x


2

, =, x


n

)into


the new vector(x′


1

, x′


2

, =, x′


n

).In matrix notation,


x′ 1 = 1 Ax (18.48)


where


The n-dimensional vectors are represented by the column matrices xand x′, and Ais


called the transformation matrixthat transforms xinto x′.


EXAMPLE 18.18Linear transformations in two dimensions


Let(x, y)be the cartesian coordinates of a point in the xy-plane, and let the matrices


represent transformations in the plane. Then, as illustrated in Figure 18.3,


(a)Ais the rotation through angle θabout the origin discussed in Example 18.1.


(b)Binterchanges the xand ycoordinates,


and represents reflection in (or rotation through 180° about) the linex 1 = 1 y.


01


10


















=










x


y


y


x


AB=











,=










,


cos sin


sin cos


θθ


θθ


01


10


CCD=











,=










10


01


10


0 a


x′=

































x


x


x


x


n

1

2

3








,=A


aaa a


aaa a


aaa


n

n

11
12 13

1

21 22 23 2

31 32 33







 aa


aaa a


n

n
nn

nn

3

1
23

 


























































,=x


x


x


x


x


n

1

2

3













′=


′=


′=


′=


















x


x


x


x


ax


ax


ax


ax


a


nn

1

2

3

11 1

21 1

31 1

11




1 12 2

22 2

32 2

22

13 3

23 3

3

x


ax


ax


ax


ax


ax


a


n

















++


++











333

33

1

2

x


ax


ax


ax


ax


ax


n

nn

nn

nn

nn n

++


++











3
Free download pdf