The Chemistry Maths Book, Second Edition

(Grace) #1

520 Chapter 18Matrices and linear transformations


so that Afollowed by Bis equivalent to the single transformation whose matrix


representation is the matrix productC 1 = 1 BA.


EXAMPLE 18.20Consecutive transformations in two dimensions


Let(x, y)be the cartesian coordinates of a point in the xy-plane, and let the matrices


represent transformations in the plane. Matrix Arepresents anticlockwise rotation


throughπ 23 about the origin, Bis reflection in the linex 1 = 1 y, and Cis inversion


through the origin. The sequence Afollowed by Bfollowed by Cis illustrated in


Figure 18.5, and is equivalent to the single transformation


The final position of the point is


0 Exercise 60


Inverse transformations


If A is a nonsingular square matrix then it has the unique inverseA


− 1

such that


A


− 1

Ax 1 = 1 AA


− 1

x 1 = 1 Ix 1 = 1 x (18.53)


()′′′, ′′′ =− − ,− +.










xy x y x y


3


2


1


2


1


2


3


2


DCBA==























10


01


01


10


1


2


3


2


3


2


1


2
















=


−−

















3


2


1


2


1


2


3


2


ABC=

















,=










,=


1


2


3


2


3


2


1


2


01


10


−−











10


01


...

..

...

...

..

...

...

...

....

...

....

.....

......

..

θ








(x,y)


(x



,y



)


o


y


.......
........
......

........

........

.

..

....
...
..
...
...
..
.

..
...
..
...
...
..
.

.......
..........
.

..
....
...
....
...

.......................

............................

............................

...............................

...........................

............................

...............................

.....................

.....

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

.....

......

.....

.....

......

.....

.....

......

.....

.....

A








(x


′′

,y


′′

)


(x



,y



)


x=y


o


y


.......
........
......

........

........

.

..

....
...
..
...
...
..
.

..
...
..
...
...
..
.

...
....
...
...
....
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
...
....
....
...
.....

.....

......

..

..

..

....

..

...

...

....

...

.

...

...

..

..

....

..

.

....

...

....

....

...

....

.

..

....

..

.

....

...

.

...

....

...

....

.

...

...

..

..

...

...

.

....

...

....

...

.

...

..

B








(x


′′

,y


′′

)


(x


′′′

,y


′′′

)


o


x


y


.......
........
......

........

........

.

..

....
...
..
...
...
..
.

..
...
..
...
...
..
.

.......
.......
........
.......
.......
........
........
.......
........
.......
.......
........
.......
.......
........
.......
.......
........
.......
.......
........
.......
.......
........
.......
.......
........
.......
.........

....

.....

....

................

C


Figure 18.5

Free download pdf