522 Chapter 18Matrices and linear transformations
where
(18.58)
The transpose of Ais
(18.59)
where, for example, the row vectora
T
1 = 1 (a
1
a
2
a
3
)is the transpose of the column
vector a. The productA
T
AofAand its transpose can then by written
(18.60)
where, for example,
(18.61)
(18.62)
We recognizea
T
bas the scalar producta 1
·
1 bof the vectorsa 1 = 1 (a
1
, a
2
, a
3
)and
b 1 = 1 (b
1
, b
2
, b
3
)(see Section 16.5), and these vectors are orthogonal ifa
T
b 1 = 1 a 1
·
1 b 1 = 10.
Also, the quantitya
T
ais the square of the length of the vector a, and the vector has
unit length ifa
T
a 1 = 1 |a|
2
1 = 11. It follows that when the columns of Aform a system of
orthonormal vectors, the productA
T
Ais the unit matrix:
AA (18.63)
aa ab ac
ba bb bc
ca cb cc
T
TTT
TTT
TTT
=
==
=
100
010
001
I
ab
T
==+
()aaa
b
b
b
ab a
123
1
2
3
11 222 33
bab+
aa
T
==+
()aaa
a
a
a
aa
123
1
2
3
1
2
2
22
3
2
+a
AA
a
b
c
abc
aa ab ac
T
T
T
T
TTT
==
()bba bb bc
ca cb cc
TTT
TTT
A
a
b
T
T
==
aaa
bbb
ccc
1
23
123
123
TT
T
c
ab=, =
a
a
a
b
b
b
1
2
3
1
2
3
,=c
c
c
c
1
2
3