The Chemistry Maths Book, Second Edition

(Grace) #1

522 Chapter 18Matrices and linear transformations


where


(18.58)


The transpose of Ais


(18.59)


where, for example, the row vectora


T

1 = 1 (a


1

a


2

a


3

)is the transpose of the column


vector a. The productA


T

AofAand its transpose can then by written


(18.60)


where, for example,


(18.61)


(18.62)


We recognizea


T

bas the scalar producta 1
·

1 bof the vectorsa 1 = 1 (a


1

, a


2

, a


3

)and


b 1 = 1 (b


1

, b


2

, b


3

)(see Section 16.5), and these vectors are orthogonal ifa


T

b 1 = 1 a 1


·


1 b 1 = 10.


Also, the quantitya


T

ais the square of the length of the vector a, and the vector has


unit length ifa


T

a 1 = 1 |a|


2

1 = 11. It follows that when the columns of Aform a system of


orthonormal vectors, the productA


T

Ais the unit matrix:


AA (18.63)


aa ab ac


ba bb bc


ca cb cc


T

TTT

TTT

TTT

=














==














=


100


010


001


I


ab


T

==+




















()aaa


b


b


b


ab a


123

1

2

3

11 222 33

bab+


aa


T

==+




















()aaa


a


a


a


aa


123

1

2

3

1

2

2

22

3

2

+a


AA


a


b


c


abc


aa ab ac


T

T

T

T

TTT

==




















()bba bb bc


ca cb cc


TTT

TTT













A


a


b


T

T

==




















aaa


bbb


ccc


1
23

123

123

TT

T

c




















ab=, =




























a


a


a


b


b


b


1

2

3

1

2

3






























,=c


c


c


c


1

2

3
Free download pdf