18.6 Orthogonal matrices and orthogonal transformations 523
and therefore,A
T
1 = 1 A
− 1
. It also follows that the determinant of an orthogonal matrix
has value±1. Thus, becausedet 1 A
T
1 = 1 det 1 Aanddet 1 I 1 = 11 , we have
det 1 (A
T
A) 1 = 1 det 1 A
T
1 × 1 det 1 A 1 = 1 (det 1 A)
2
1 = 11 (18.64)
EXAMPLE 18.22 The matrix
is orthogonal with properties
(i)
andAA
T
1 = 1 (A
T
A)
T
1 = 1 I.
(ii) The columns of Aform the vectors
with properties
Similarly for the rows of A(the columns ofA
T
).
ab 11 bc 11 ca 11
·· ·
=−+=, =−−+=, =−
2
9
4
9
2
9
0
2
9
2
9
4
9
0
4
99
2
9
2
9
++= 0
aa bb cc 11 11 11
···
===
222
1
3
2
3
2
3
= 1
ab c=,,
,=,−,
,=−,
2
3
2
3
1
3
1
3
2
3
2
3
2
3
1
3
,,
2
3
AA
T
=−
−
2
3
2
3
1
3
1
3
2
3
2
3
2
3
1
3
2
3
−
−
=
2
3
1
3
2
3
2
3
2
3
1
3
1
3
2
3
2
3
1100
010
001
A=
−
−
2
3
1
3
2
3
2
3
2
3
1
3
1
3
2
3
2
3