The Chemistry Maths Book, Second Edition

(Grace) #1

18.6 Orthogonal matrices and orthogonal transformations 523


and therefore,A


T

1 = 1 A


− 1

. It also follows that the determinant of an orthogonal matrix


has value±1. Thus, becausedet 1 A


T

1 = 1 det 1 Aanddet 1 I 1 = 11 , we have


det 1 (A


T

A) 1 = 1 det 1 A


T

1 × 1 det 1 A 1 = 1 (det 1 A)


2

1 = 11 (18.64)


EXAMPLE 18.22 The matrix


is orthogonal with properties


(i)


andAA


T

1 = 1 (A


T

A)


T

1 = 1 I.


(ii) The columns of Aform the vectors


with properties


Similarly for the rows of A(the columns ofA


T

).


ab 11 bc 11 ca 11
·· ·

=−+=, =−−+=, =−


2


9


4


9


2


9


0


2


9


2


9


4


9


0


4


99


2


9


2


9


++= 0


aa bb cc 11 11 11


···


===
























222

1


3


2


3


2


3








= 1


ab c=,,







,=,−,







,=−,


2


3


2


3


1


3


1


3


2


3


2


3


2


3


1


3


,,








2


3


AA


T

=−





       




      


2


3


2


3


1


3


1


3


2


3


2


3


2


3


1


3


2


3









       




       


=


2


3


1


3


2


3


2


3


2


3


1


3


1


3


2


3


2


3


1100


010


001














A=






       




       


2


3


1


3


2


3


2


3


2


3


1


3


1


3


2


3


2


3

Free download pdf