The Chemistry Maths Book, Second Edition

(Grace) #1

544 Chapter 19The matrix eigenvalue problem


EXAMPLE 19.10The eigenvectors of the matrix (Examples 19.2 and 19.3)


are (ignoring the arbitrary multipliers)


corresponding to eigenvaluesλ


1

1 = 1 − 1 , λ


2

1 = 11 , λ


3

1 = 12. Then


and


so that AX 1 = 1 XD


0 Exercises 23, 24


If the matrix Xof the eigenvectors of Ais nonsingular then premultiplication of both


sides of equation (19.26) by the inverse matrixX


− 1

gives


D 1 = 1 X


− 1

AX (19.28)


and Ahas been reduced to the diagonal formD.


XD=−























011


123


111


100


010


002








=















012


126


112


AX=























211


11 4 5


110


011


123


111











=















012


126


112


Xxxx==−D














( ) , =


123

1

011


123


111


λ 0 00


00


00


100


010


002


2

3

λ


λ




















=

















xxx


123

0


1


1


1


2


1


1


=−














,=














,= 33


1














A=

















211


11 4 5


110

Free download pdf