544 Chapter 19The matrix eigenvalue problem
EXAMPLE 19.10The eigenvectors of the matrix (Examples 19.2 and 19.3)
are (ignoring the arbitrary multipliers)
corresponding to eigenvaluesλ
1
1 = 1 − 1 , λ
2
1 = 11 , λ
3
1 = 12. Then
and
so that AX 1 = 1 XD
0 Exercises 23, 24
If the matrix Xof the eigenvectors of Ais nonsingular then premultiplication of both
sides of equation (19.26) by the inverse matrixX
− 1
gives
D 1 = 1 X
− 1
AX (19.28)
and Ahas been reduced to the diagonal formD.
XD=−
−
011
123
111
100
010
002
=
−
012
126
112
AX=
−
−
−
−
211
11 4 5
110
011
123
111
=
−
012
126
112
Xxxx==−D
( ) , =
123
1
011
123
111
λ 0 00
00
00
100
010
002
2
3
λ
λ
=
−
xxx
123
0
1
1
1
2
1
1
=−
,=
,= 33
1
A=
−
−
−
211
11 4 5
110