The Chemistry Maths Book, Second Edition

(Grace) #1

19.7 Exercises 557


Repeat Exercise 25 for:



  1. of Exercise 4 27. of Exercise 8

  2. of Exercise 9


Section 19.5


Express in matrix form:



  1. 5 x


2

1 − 12 xy 1 − 13 y


2


  1. 4 xy 31. 3 x


2

1 − 14 xy 1 + 12 xz 1 − 16 yz 1 + 1 y


2

1 − 12 z


2

Transform the following quadratic forms into canonical form:



  1. 33.ax


2

1 + 12 bxy 1 + 1 ay


2


  1. 3 x


1

2

1 + 12 x


1

x


2

1 + 12 x


1

x


4

1 + 13 x


2

2

1 + 12 x


2

x


3

1 + 13 x


3

2

1 + 12 x


3

x


4

1 + 13 x


4

2

35.Derive equations (19.44) for the components of the inertia tensor.


[Hint: Expand equation (16.60),l 1 = 1 mr


2

y 1 − 1 m(r 1
·

1 y)r, for the angular momentum in


terms of components.]


Section 19.6


Find the complex conjugate and Hermitian conjugate of the following matrices














39.If and , find (i) a



a (ii)b



b (iii)a



b (iv)b



a


40.Which of the matrices in Exercise 36–38 are Hermitian?



  1. (i)Show that is unitary.


(ii)Confirm that both the columns and the rows of Aform unitary systems of vectors.


42.Repeat Exercise 41 for
A=−















ii i


iii


ii


32 6


326


30 26


.


A=


−−










12 2


212


i


i


b=














2


0


3


i


a=















i


i


1


00


0


00
















i


ii


i


2


1


i


−i










12


3


+−


+−










ii


ii


763 13


1

2

12 2

2

xxxx++


A=














030


303


030


A=














120


210


021


A=










22


13

Free download pdf