20.3 Solution of ordinary equations 563
Then, iff(x
3
) 1 > 10 , so that the zero lies betweenx
1
andx
3
as in the figure, repeat for
the intervalx
1
tox
3
, and so on.
EXAMPLE 20.5Bisection method for
To find write f(x) 1 = 1 x
2
1 − 151 = 10. The root lies betweenx
<
1 = 12 and x
>
1 = 13 , with
f(x
<
) 1 = 1 − 1 andf(x
>
) 1 = 14. Thenx
3
1 = 1 (x
<
1 + 1 x
>
) 221 = 1 2.5. Table 20.2 shows the computation
to 4 significant figures on a standard pocket calculator.
Table 20.2 To find the square root of 5 correct to 4 significant figures
n 012345
x
<
2 2 2 2.125 2.1875 2.21875
x
>
3 2.5 2.25 2.25 2.25 2.25
2.5 2.25 2.125 2.1875 2.21875 2.23438
n 67891011
x
<
2.23438 2.23438 2.23438 2.23438 2.23535 2.23584
x
>
2.25 2.24219 2.23828 2.23633 2.23633 2.23633
2.24219 2.23828 2.23633 2.23535 2.23584
The values ofx
<
andx
>
after 11 iterations both round to 2.236, and this is the required
value (2.236
2
=4.999696).
0 Exercises 9–11
The bisection method is an example of a bracketing method, with the zero known to
lie in an interval of decreasing size. In the present case, the size of the interval is halved
at every iteration. The convergence is slow, but the method cannot fail. It is the method
of last resort when all else fails.
1
2
()xx
<>
1
2
()xx
<>
5 ,
5
..........
........
.......
....
.......
........
..
...
..
...
...
..
...
...
..
..
.
...
...
..
...
...
..
..
f(x)
f(x
2
)
f(x
3
)
f(x
1
)
x
x
1
x
2
x
3
- ••
0
..
....
.....
....
....
....
.....
....
....
....
....
.....
....
...
.....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
....
.....
....
....
....
.....
....
....
.....
....
.....
....
....
.....
.....
....
.....
.....
.....
.....
.....
.....
......
.....
.....
.......
.....
......
.......
......
.......
........
.......
........
.........
..........
...........
...............
..
Figure 20.1