The Chemistry Maths Book, Second Edition

(Grace) #1

564 Chapter 20Numerical methods


The Newton–Raphson method


The Newton–Raphson method, also called


simply Newton’s method, is the most famous


method of finding the zeros of a function.


1

Unlike the bisection method, it requires the


evaluation of the derivativef′(x)as well as the


functionf(x)itself. The method is illustrated


in Figure 20.2.


Given an approximate solutionx


0

off(x) 1 = 10 ,


the tangent to the curve atx


0

is extended until


it crosses the x-axis, at pointx


1

. The gradient


of the tangent is


(20.9)


so that


(20.10)


Thenx


1

is the new estimate of the zero. The process is repeated withx


0

replaced byx


1

to givex


2

, and so on:


(20.11)


EXAMPLE 20.6Newton–Raphson for


To find writef(x) 1 = 1 x


2

1 − 151 = 10. Then f′(x) 1 = 12 x, so that the Newton–Raphson


formula is


Table 20.3 shows the computation using all the figures on a standard 10-digit


calculator, starting withx


0

1 = 13.


xx


x


x


nn

n

n

+

=−



1

2

5


2


5 ,


5


xx


fx


fx


n


nn

n

n

+

=−



=,,,,


1

0123


()


()


...


xx


fx


fx


10

0

0

=−



()


()


fx


fx


xx


′=



()


()


0

0

01

1

Numerical methods for the solution of equations have their origins in the determination of square and


cube roots by the Babylonians and by the Chinese. Chapter 4 of the Jiuzhang suanshu(Nine chapters on the


mathematical art) of the early Han dynasty, around 200 BC, describes a method of finding square roots that is


similar to Newton’s method. Jia Xian generalized the method for the solution of polynomial equations in the 11th


century (he also described the construction and uses of the Pascal triangle), and the first detailed account was given


in the Shuchu jiuzhang(Mathematical treatise in nine sections) of 1247 by Qin Jiushao (c.1202–1261). Newton’s


method, described in the Methodus fluxionumof 1671 but not published until 1736, is essentially the Chinese


method for polynomials. Joseph Raphson (1648–1715), who ‘was one of the few people whom Newton allowed to


see his mathematical papers’, published the method in 1690.


..............
.......
.........

..

........

........

....

.

...

..

...

..

..

....
..
...
...
..
...
...
..
..

..
..
...
...
..
...
...
..
..

0
















x


0

x


1

x


2

x


y


f(x


0

)


.

...

...

...

...

..

...

...

...

..

....

..

...

...

...

..

....

..

...

...

...

..

...

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

...

..

...

...

...

...

...

..

...

...

....

....

...

....

....

...

....

....

...

....

....

....

...

....

....

...

....

....

...

....

....

...

....

....

...

....

....

...

....

....

....

...

....

....

....

...

....

....

...

....

....

...

....

....

...

....

....

...

....

....

...

....

....

.

................

.....................

................

.................

............

..........

..........

........

........

........

.......

......

.......

.......

.....

.......

......

.....

......

......

.....

.....

.....

.....

.....

.....

.....

.....

....

.....

....

.....

....

.....

....

....

.....

....

....

.....

....

....

....

....

....

.....

....

....

....

...

..

...

..

..

...

..

...

...

..

...

...

..

...

...

...

...

...

...

...

....

...

...

....

....

....

....

....

.....

.....

.....

.....

.......

......

........

..........

.....

Figure 20.2

Free download pdf