The Chemistry Maths Book, Second Edition

(Grace) #1

20.4 Interpolation 567


Linear interpolation


The straight liney 1 = 1 p


1

(x) 1 = 1 a


0

1 + 1 a


1

xthrough the two


points (x


0

, y


0

) and (x


1

, y


1

), as in Figure 20.4, satisfies


the pair of linear equations


y


0

1 = 1 a


0

1 + 1 a


1

x


0

, y


1

1 = 1 a


0

1 + 1 a


1

x


1

with solution


Then


and this can be rearranged as


(20.17)


The linear interpolation formula is used to find an approximate value of a function at


a point xin the intervalx


0

tox


1

. The method is illustrated in the following example


for the (known) functione


x

.


EXAMPLE 20.7Linear interpolation


Two points on the graph ofy 1 = 1 e


x

are (to 4 decimal places in y)(x


0

, y


0

) 1 = 1 (0.80, 2.2255)


and(x


1

, y


1

) 1 = 1 (0.84, 2.3164). The linear interpolation formula (20.17) is then


Then, atx 1 = 1 0.832,


e


0.832

1 ≈ 1 2.2255 1 + 1 0.0727 1 = 1 2.2982


The true value is 2.2979 (to 4 decimal places).


0 Exercise 16


When linear interpolation is used between each pair of neighbouring points we have


piecewise linear interpolation, as illustrated in Figure 20.5 for the points listed in


Table 20.4 (compare with Figures 20.6 to 20.8).


ey x


x

≈=. + −.


.−.


.−.



2 2255 0 80


2 3164 2 2255


084 080


()









yy xx


yy


xx


=+−












00

10

10

()


y


yx yx


xx


yy


xx


=


























01 10

10

10

10

xx


a


yx yx


xx


a


yy


xx


0

01 10

10

1

10

10

=




,=




...........
.......
......

..

.........

.......

.

..

..
..
...
..
...
...
..
...

.
..
...
..
...
...
..
...

.

...

....

...

...

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

...

...

...

...

...

....

...

...

....

...

...

....

...

....

....

...

....

....

....

....

....

....

....

.....

.....

.....

.....

......

.....

........

.......

.........

........

y


x


x


0

x


1

x


y


0

y


1

y












.

.....

.....

....

.....

.....

.....

....

.....

.....

....

.....

.....

....

......

....

.....

.....

....

.....

.....

....

.....

.....

.....

....

.....

.....

....

.....

.....

....

......

....

.....

.....

....

.....

.....

....

.....

.....

.....

....

.....

.....

....

.....

.....

....

.....

.....

.....

.....

....

.....

.....

Figure 20.4

Free download pdf