The Chemistry Maths Book, Second Edition

(Grace) #1

568 Chapter 20Numerical methods


Quadratic interpolation


The quadratic function that passes through three successive points, or nodes,(x


0

, y


0

),


(x


1

, y


1

) and (x


2

, y


2

) can be written as


p


2

(x) 1 = 1 L


0

(x)y


0

1 + 1 L


1

(x)y


1

1 + 1 L


2

(x)y


2

(20.18)


where


This is Lagrange’s formulafor quadratic interpolation, and is used to find an


approximate value of a function in the intervalx


0

tox


2

.


3

EXAMPLE 20.8Quadratic interpolation


Three points on the graph of e


x

are (to 6 decimal places in e


x

)(x


0

, y


0

) 1 = 1 (0.80,


2.225541), (x


1

, y


1

) 1 = 1 (0.84, 2.316367)and (x


2

, y


2

) 1 = 1 (0.88, 2.410900). Quadratic


interpolation atx 1 = 1 0.832then gives (compare Example 20.7)


e


0.832

1 = 1 0.12y


0

1 + 1 0.96y


1

1 − 1 0.08y


2

1 = 1 2.297905


compared with the true value 2.297910 (to 6 decimal places).


0 Exercise 17


Lx


xx xx


xxxx


2

01

2021

()


()()


()()


=


−−


−−


Lx


xx xx


xxxx


Lx


xx


0

12

0102

1

()


()()


()()


()


(


=


−−


−−


,=



002

1012

)( )


()()


xx


xxxx



−−


0


1


2


123


............
........
........
.

......

........

.....

..

..

....
...
...
..
...
..
...
.

..
...
...
..
...
..
...
.

y


x






































..

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

..

...

...

...

..

...

...

..

...

...

..

...

...

...

..

...

...

..

......
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
........
........
..........
.........
......
....
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
..

...

...

....

..

...

....

...

...

...

...

...

...

...

...

...

...

...

...

...

...

....

...

..

...

..

...

...

..

...

...

..

...

..

...

..

...

...

..

...

...

..

...

..

...

...

..

...

..

...

..

...

...

..

...

...

..

...

..

...

...

..

...

...

..

...

..

...

..

......
..
...
...
..
...
...
...
..
...
...
..
...
...
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
...
...
..
..

.....

.....

.....

.....

.....

.....

.....

......

Table 20.4


xy


0.0 1.0000


0.4 1.8902


0.8 1.0517


1.2 0.9577


1.6 0.5207


2.0 1.0000


2.4 2.1184


2.8 1.3809


3.2 1.5690


Figure 20.5


3

Lagrange’s general interpolation formula (1795) was anticipated by Euler in the Institutiones calculi


differentialisof 1755 and given explicitly by Edward Waring (1734–1793), professor at Cambridge, in a


Philosophical Transactions paper of 1779.

Free download pdf