568 Chapter 20Numerical methods
Quadratic interpolation
The quadratic function that passes through three successive points, or nodes,(x
0
, y
0
),
(x
1
, y
1
) and (x
2
, y
2
) can be written as
p
2
(x) 1 = 1 L
0
(x)y
0
1 + 1 L
1
(x)y
1
1 + 1 L
2
(x)y
2
(20.18)
where
This is Lagrange’s formulafor quadratic interpolation, and is used to find an
approximate value of a function in the intervalx
0
tox
2
.
3
EXAMPLE 20.8Quadratic interpolation
Three points on the graph of e
x
are (to 6 decimal places in e
x
)(x
0
, y
0
) 1 = 1 (0.80,
2.225541), (x
1
, y
1
) 1 = 1 (0.84, 2.316367)and (x
2
, y
2
) 1 = 1 (0.88, 2.410900). Quadratic
interpolation atx 1 = 1 0.832then gives (compare Example 20.7)
e
0.832
1 = 1 0.12y
0
1 + 1 0.96y
1
1 − 1 0.08y
2
1 = 1 2.297905
compared with the true value 2.297910 (to 6 decimal places).
0 Exercise 17
Lx
xx xx
xxxx
2
01
2021
()
()()
()()
=
−−
−−
Lx
xx xx
xxxx
Lx
xx
0
12
0102
1
()
()()
()()
()
(
=
−−
−−
,=
−
002
1012
)( )
()()
xx
xxxx
−
−−
0
1
2
123
............
........
........
.
......
........
.....
..
..
....
...
...
..
...
..
...
.
..
...
...
..
...
..
...
.
y
x
..
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
......
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
..
...
...
........
........
..........
.........
......
....
...
...
...
...
...
...
...
...
....
...
...
...
...
...
....
...
...
..
...
...
....
..
...
....
...
...
...
...
...
...
...
...
...
...
...
...
...
...
....
...
..
...
..
...
...
..
...
...
..
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
..
...
..
...
...
..
...
...
..
...
..
...
...
..
...
...
..
...
..
...
..
......
..
...
...
..
...
...
...
..
...
...
..
...
...
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
...
...
..
..
.....
.....
.....
.....
.....
.....
.....
......
Table 20.4
xy
0.0 1.0000
0.4 1.8902
0.8 1.0517
1.2 0.9577
1.6 0.5207
2.0 1.0000
2.4 2.1184
2.8 1.3809
3.2 1.5690
Figure 20.5
3
Lagrange’s general interpolation formula (1795) was anticipated by Euler in the Institutiones calculi
differentialisof 1755 and given explicitly by Edward Waring (1734–1793), professor at Cambridge, in a
Philosophical Transactions paper of 1779.