The Chemistry Maths Book, Second Edition

(Grace) #1

20.4 Interpolation 569


When quadratic interpolation is used for each triple of neighbouring points we have


piecewise quadratic interpolation, as illustrated in Figure 20.6 for the points listed in


Table 20.4 (compare with Figures 20.5, 20.7, and 20.8).


Newton’s method of divided differences


The interpolating polynomialp


n

(x)through (n 1 + 11 ) given points can be expressed in


a simple way in terms of divided differences. The first and second divided differences are


(20.19)


and in general


(20.20)


Equation (20.17) forp


1

(x)is then


p


1

(x) 1 = 1 y


0

1 + 1 (x 1 − 1 x


0

)f[x


0

, x


1

]


= 1 p


0

(x) 1 + 1 (x 1 − 1 x


0

)f[x


0

, x


1

] (20.21)


and (20.18) forp


2

(x)can be rewritten as


p


2

(x) 1 = 1 y


0

1 + 1 (x 1 − 1 x


0

)f[x


0

, x


1

] 1 + 1 (x 1 − 1 x


0

)(x 1 − 1 x


1

)f[x


0

, x


1

, x


2

]


= 1 p


1

(x) 1 + 1 (x 1 − 1 x


0

)(x 1 − 1 x


1

)f[x


0

,x


1

,x


2

] (20.22)


In general,


p


k+ 1

(x) 1 = 1 p


k

(x) 1 + 1 (x 1 − 1 x


0

)(x 1 − 1 x


1

) -(x 1 − 1 x


k

)f[x


0

, x


1

, =,x


k+ 1

] (20.23)


The relations amongst the divided differences are demonstrated in Table 20.5 for


5 points. Column D


1

contains the first divided differences, column D


2

the second


divided differences, and so on. Each divided difference is the difference of its ‘parents’


in the column on its left, divided by the difference of the extreme values of x.


fx x x


fx x x fx x x


k

kk

[]


[][ ]


01

12 01 1

,, , =


,,, − ,,,



...


......


xxx


k


0

fx x


yy


xx


fx x x


fx x f


[] [ ]


[][


01

10

10

012

12

,=




,,,=


,−xxx


xx


01

20

,



]


0


1


2


123


...............
........
.....

..

........

........

.

...

..

..
...
..
...
...
..
...
..

.
...
..
...
...
..
...
..

y


x






































.

.

..

.

..

.

..

.

..

.

..

..

.

..

..

..

.

...

.

..

...

..

..

..

..

...

...

..

...

...

...

....

....

....

.....

.......

.........

.............
........
.......
.....
....
....
....
...
...
...
...
..
...
...
..
..
..
..
..
...
.
..
..
..
..
..
.
..
..
.
..
.
..
.
..
.

...............
........
.....
.....
....
....
....
...
...
....
...
...
...
...
...
...
...
...
...
...
...
...
.......

.....

...

...

....

...

..

...

...

...

..

...

...

..

...

...

...

...

...

...

...

...

...

...

...

..

...

...

..

...

..

...

..

...

...

..

...

..

...

...

..

..

...

...

..

...

..

...

..

...

..

...

..

...

...

..

...

..

...

...

..

...

...

...

..

.....
...
....
...
..
...
...
..
...
...
..
...
..
..
...
..
..
...
..
...
..
...
..
...
...
..
....
...
...
....
....
.....
........

.......

....

...

...

...

...

...

...

...

.

...

...

.

..

...

...

.

..

...

..

..

..

...

.

...

..

...

.

...

...

.

..

...

...

..
...
...

.
...
..
..

..
...
..
.

...
...
..

..
...
..
.

...
...
..

.....
...
........
..
...
...

...
...
..

.
...
...
.

.
....
...

.

...

...

.

..

...

...

..

...

...

..

...

...

..

...

..

.

...

..

...

.

..

...

..

.

...

...

.

..

...

...

...

..

...

.

...

..

..

..

..

...

.

.
..
...
..

..
...
...

.
...
..
..

...
..
...

.
...
...
.

...
...
..

.

.....

..

.

.....

..

.

.

Figure 20.6

Free download pdf