570 Chapter 20Numerical methods
EXAMPLE 20.9Newton’s method of divided differences fore
x
Five points on the graph ofe
x
are given in the first two columns of Table 20.6. The
divided differences have been computed on a standard 10-digit calculator, and are
quoted to 8 decimal places.
Table 20.5 Divided difference interpolation table
xy D
1
D
2
D
3
D
4
x
0
y
0
f[x
0
, x
1
]
x
1
y
1
f[x
0
, x
1
, x
2
]
f[x
1
, x
2
] f[x
0
, x
1
, x
2
, x
3
]
x
2
y
2
f[x
1
, x
2
, x
3
] f[x
0
, x
1
, x
2
, x
3
, x
4
]
f[x
2
, x
3
] f[x
1
, x
2
, x
3
, x
4
]
x
3
y
3
f[x
2
, x
3
, x
4
]
f[x
3
, x
4
]
x
4
y
4
Table 20.6 Divided difference table for e
x
xy D
1
D
2
D
3
D
4
0.80 2.22554093
2.27065125
0.84 2.31636698 1.15833750
2.36331825 0.39393233
0.88 2.41089971 1.20560938 0.10058544
2.45976700 0.41002600
0.92 2.50929039 1.25481250
2.56015200
0.96 2.61169647
Using the numbers in boldfacein the table,
p
1
(x) 1 = 1 2.22554093 1 + 1 2.27065125(x 1 − 1 0.8) for 0.80 1 < 1 x 1 < 1 0.84
p
2
(x) 1 = 1 p
1
(x) 1 + 1 1.15833750(x 1 − 1 0.8)(x 1 − 1 0.84) 0.80 1 < 1 x 1 < 1 0.88
p
3
(x) 1 = 1 p
2
(x) 1 + 1 0.39393233(x 1 − 1 0.8)(x 1 − 1 0.84)(x 1 − 1 0.88) 0.80 1 < 1 x 1 < 1 0.92
p
4
(x) 1 = 1 p
3
(x) 1 + 1 0.10058544(x 1 − 1 0.8)(x 1 − 1 0.84)(x 1 − 1 0.88)(x 1 − 1 0.92) 0.80 1 < 1 x 1 < 1 0.96