The Chemistry Maths Book, Second Edition

(Grace) #1

570 Chapter 20Numerical methods


EXAMPLE 20.9Newton’s method of divided differences fore


x

Five points on the graph ofe


x

are given in the first two columns of Table 20.6. The


divided differences have been computed on a standard 10-digit calculator, and are


quoted to 8 decimal places.


Table 20.5 Divided difference interpolation table


xy D


1

D


2

D


3

D


4

x


0

y


0

f[x


0

, x


1

]


x


1

y


1

f[x


0

, x


1

, x


2

]


f[x


1

, x


2

] f[x


0

, x


1

, x


2

, x


3

]


x


2

y


2

f[x


1

, x


2

, x


3

] f[x


0

, x


1

, x


2

, x


3

, x


4

]


f[x


2

, x


3

] f[x


1

, x


2

, x


3

, x


4

]


x


3

y


3

f[x


2

, x


3

, x


4

]


f[x


3

, x


4

]


x


4

y


4

Table 20.6 Divided difference table for e


x

xy D


1

D


2

D


3

D


4

0.80 2.22554093


2.27065125


0.84 2.31636698 1.15833750


2.36331825 0.39393233


0.88 2.41089971 1.20560938 0.10058544


2.45976700 0.41002600


0.92 2.50929039 1.25481250


2.56015200


0.96 2.61169647


Using the numbers in boldfacein the table,


p


1

(x) 1 = 1 2.22554093 1 + 1 2.27065125(x 1 − 1 0.8) for 0.80 1 < 1 x 1 < 1 0.84


p


2

(x) 1 = 1 p


1

(x) 1 + 1 1.15833750(x 1 − 1 0.8)(x 1 − 1 0.84) 0.80 1 < 1 x 1 < 1 0.88


p


3

(x) 1 = 1 p


2

(x) 1 + 1 0.39393233(x 1 − 1 0.8)(x 1 − 1 0.84)(x 1 − 1 0.88) 0.80 1 < 1 x 1 < 1 0.92


p


4

(x) 1 = 1 p


3

(x) 1 + 1 0.10058544(x 1 − 1 0.8)(x 1 − 1 0.84)(x 1 − 1 0.88)(x 1 − 1 0.92) 0.80 1 < 1 x 1 < 1 0.96

Free download pdf