578 Chapter 20Numerical methods
Formula (20.37) is used in the following examples to derive two results that are
important in statistical thermodynamics.
EXAMPLE 20.13The rotational partition function of the linear rigid rotor
The energy levels of the linear rigid rotor are
with degeneraciesg
J
1 = 12 J 1 + 11 , where Jis the rotational quantum number and Iis the
moment of inertia. The rotational partition function is then
whereθ 1 = 1 h
2
28 π
2
Ikis called the rotational temperature.
Putf(J) 1 = 1 (2J 1 + 1 1)e
−J(J+1)θ 2 T
in the Euler–MacLaurin formula (20.37), witha 1 = 10 ,
b 1 → 1 ∞. Then
The integral is evaluated by means of the substitutionu 1 = 1 J(J 1 + 1 1). Then
Also,f(J)and all its derivative go to zero asJ 1 → 1 ∞, and the values atJ 1 = 10 can be
obtained from the expansion off(J)as a power series in J,
Thenf(0) 1 = 11 ,f′(0) 1 = 121 − 1 θ 2 T, f′′(0) 1 = 1 − 12 θ 2 T 1 + 112 θ
2
2 T
2
1 − 1 θ
3
2 T
3
, and all higher
derivatives atJ 1 = 10 are of order(θ 2 T)
2
or higher. Then
q (20.38)
T
TT
=++
θ
1 θθ
3
1
15
2
terms in gand higher
fJ
T
J
T
T
()=+ − J
+− +
12 +−
3
2
2
2
2
2
θθθ θ
TT
TT
+− J
2
6
2
2
3
3
3
θθ
ZZ
0
1
0
21
∞∞
()
()
Je dJ e du
T
JJ T u T
+==
−+/θθ−/
θ
+′−′−′′′ − ′′′ +
1
12
0
1
720
[ ( ) ( )]ff f f∞∞[ ( ) ( )] 0
qfJ fJdJff
J
== ++
=
∑
0 0
1
2
0
∞
∞
()Z () [() ()]∞
qge Je
J
J
EkT
J
JJ T
J
==+
=
−
=
−+
∑∑
00
1
21
∞∞
()
()θ
E
JJ h
I
J
J
=
,=,,,,
()1
8
0123
2
2
π
...