The Chemistry Maths Book, Second Edition

(Grace) #1

578 Chapter 20Numerical methods


Formula (20.37) is used in the following examples to derive two results that are


important in statistical thermodynamics.


EXAMPLE 20.13The rotational partition function of the linear rigid rotor


The energy levels of the linear rigid rotor are


with degeneraciesg


J

1 = 12 J 1 + 11 , where Jis the rotational quantum number and Iis the


moment of inertia. The rotational partition function is then


whereθ 1 = 1 h


2

28 π


2

Ikis called the rotational temperature.


Putf(J) 1 = 1 (2J 1 + 1 1)e


−J(J+1)θ 2 T

in the Euler–MacLaurin formula (20.37), witha 1 = 10 ,


b 1 → 1 ∞. Then


The integral is evaluated by means of the substitutionu 1 = 1 J(J 1 + 1 1). Then


Also,f(J)and all its derivative go to zero asJ 1 → 1 ∞, and the values atJ 1 = 10 can be


obtained from the expansion off(J)as a power series in J,


Thenf(0) 1 = 11 ,f′(0) 1 = 121 − 1 θ 2 T, f′′(0) 1 = 1 − 12 θ 2 T 1 + 112 θ


2

2 T


2

1 − 1 θ


3

2 T


3

, and all higher


derivatives atJ 1 = 10 are of order(θ 2 T)


2

or higher. Then


q (20.38)


T


TT


=++


















θ


1 θθ


3


1


15


2

terms in gand higher


fJ


T


J


T


T


()=+ − J








+− +










12 +−


3


2


2


2

2

2

θθθ θ


TT


TT


+− J














2


6


2

2

3

3

3

θθ





ZZ


0

1

0

21


∞∞

()


()

Je dJ e du


T


JJ T u T

+==


−+/θθ−/

θ


+′−′−′′′ − ′′′ +


1


12


0


1


720


[ ( ) ( )]ff f f∞∞[ ( ) ( )] 0 


qfJ fJdJff


J

== ++


=


0 0

1


2


0




()Z () [() ()]∞


qge Je


J

J

EkT

J

JJ T

J

==+


=


=

−+

∑∑


00

1

21


∞∞

()


()θ

E


JJ h


I


J


J

=






,=,,,,


()1


8


0123


2

2

π


...

Free download pdf