588 Chapter 20Numerical methods
Euler’s method is called a first-order method because only the first power of his
retained in the Taylor expansion. The truncation error at each step is therefore of
order h
2
, so that halving the step size hreduces the error by a factor of 4. However, the
cumulative (global) error for a series of steps is of order h.
EXAMPLE 20.18Given the initial value problem
y′(x) 1 = 1 y 1 + 1 1, y(0) 1 = 11
use Euler’s method to obtain an approximate value ofy(1)using step sizesh 1 = 1 0.2
andh 1 = 1 0.1.
The results of applying the recursion
y
n+ 1
1 = 1 y
n
1 + 1 h(y
n
1 + 1 1)
are summarized in Table 20.10, and compared with the exact values obtained from
the solutiony(x) 1 = 12 e
x
1 − 1 1.
Table 20.10 Example of Euler’s method
hnx
n
y
n
exact error hnx
n
y
n
exact error
0.2 0 0.0 1.0000 1.0000 0.0000 0.1 0 0.0 1.0000 1.0000 0.0000
1 0.1 1.2000 1.2103 0.0103
1 0.2 1.4000 1.4428 0.0428 2 0.2 1.4200 1.4428 0.0228
3 0.3 1.6620 1.6997 0.0377
2 0.4 1.8800 1.9836 0.1036 4 0.4 1.9282 1.9836 0.0554
5 0.5 2.2210 2.2974 0.0764
3 0.6 2.4560 2.6442 0.1882 6 0.6 2.5431 2.6442 0.1011
7 0.7 2.8974 3.0275 0.1301
4 0.8 3.1472 3.4511 0.3039 8 0.8 3.2872 3.4511 0.1639
9 0.9 3.7159 3.9192 0.2033
5 1.0 3.9766 4.4366 0.4599 10 1.0 4.1875 4.4366 0.2491
.
..
..
...
..
...
..
...
...
..
...
...
..
..
.
...
...
..
...
...
..
..
......................
........
...
.
.......
........
...
x
y
y
0
y
1
y
2
x
0
x
1
x
2
.....
..........
.........
..........
..........
.........
.......
.....
...
....
.....
....
....
....
....
....
.....
....
....
....
....
....
...
...................
........................
...................
.................
..............
.............
.............
..........
..........
...........
........
.........
.........
........
.......
.........
.......
.......
........
.......
.......
........
......
.......
........
......
......
.......
.......
......
.......
......
.....
.......
......
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
......
.....
.......
.....
......
......
Figure 20.11