The Chemistry Maths Book, Second Edition

(Grace) #1

21.7 Continuous distributions 613


21.7 Continuous distributions


The distributions considered so far have been discrete, involving the discrete variable


x(or a variable that is treated as discrete for practical purposes). Each value of such


a variable has an observed relative frequency and a corresponding theoretical


probability. Such distributions describe processes that involve the counting of discrete


events, and one example is the binomial distribution described in Section 21.5.


Processes that involve the measurement of a continuous quantity are described by


continuous distributions, for which the variable xcan have any value in a continuous


range,a 1 ≤ 1 x 1 ≤ 1 bsay. The number of possible outcomes is then infinite, and the


probability of a particularoutcome is not defined (it is effectively zero). We define,


instead, the probability that the value of xlies in a specified intervalx


1

1 ≤ 1 x 1 ≤ 1 x


2

:


(21.33)


whereρ(x)is called the probability density distribution(or probability density


function, or just probability density). Whenx


2

1 − 1 x


1

1 = 1 ∆xis small enough, the probability


in the interval xtox 1 + 1 ∆xis


P(x 1 → 1 x 1 + 1 ∆x) 1 ≈ 1 ρ(x)∆x (21.34)


with equal sign for an infinitesimal intervaldx. The total probability (the normalization


ofρ(x))is


(21.35)


Figure 21.5 illustrates the graphical interpretation. The total area under the curve


between aand bis equal to 1 and represents the total probability (equation (21.35)).


The shaded region has area equal to the probability given by (21.33).


The properties of a continuous distribution are obtained by replacing the sums


for the discrete distribution by integrals over the range of possible values, and the


expectation values are then (see equations (21.11) to (21.23) for the discrete case)


(21.36)
〈〉=ffxxdx

a

b

Z ()()ρ


Pa x b x dx


a

b

()()≤≤ =Z ρ = 1


Px x x x dx


x

x

()()


12

1

2

≤≤ =Z ρ


.....
...
..
...
...
..
...
...

...
...
..
...
...
..
...
...

.................
........
.......
......

........

.......

.......

x


ρ(x)


x


1

x


2

0 a


b


P(x


1

≤x≤x


2

)


.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....

.......

......

........

.......

......

........

.......

......

........

.......

.......

.......

.......

.......

........

.......

.......

........

.......

.......

.........

.......

........

.........

........

........

..........

..........

..........

.............

...............

.........................

........................

.........................

...............

.............

..........

..........

..........

........

.........

........

........

........

........

.......

........

........

.......

.......

.......

.......

.......

........

......

.......

........

.......

......

........

.......

......

........

.......

......

........

.......

.......

.......

.......

.......

........

.......

.......

........

.......

.......

.........

.......

........

........

........

........

.........

.........

.....

.........

.....

.....

.....

.....

.....

.....

..

.....

......

......

.....

......

......

...

.....

.....

.....

.....

.....

.....

.....

.....

......

......

.....

......

......

......

.......

......

.......

........

........

.........

............

.............

.................

Figure 21.5

Free download pdf