21.10 Least squares 621
Division by then gives the pair of normal equations
(21.53)
F1− 1 mE1− 1 c 1 = 10
and these have solution
(21.54)
The resulting line passes through the centroid(E, F)of the data points.
If they
ivalues all have the same precision σthen the estimated parameters mand
chave standard deviations given by
(21.55)
and the linear least-squares fit with estimated errors isy 1 = 1 mx 1 + 1 cwith
(21.56)
EXAMPLE 21.15Find the linear least-squares fit for the following data points:
Table 21.7
x 0369121518
y 3.3 2.5 2.3 1.7 1.4 0.5 0.2
We have N 1 = 17 , E1= 19 , F1= 1 1.7, 1 = 1117 ,
1
= 1 64.5 271 = 1 9.21429, 1 −1E
21 = 136 and
1 −1EF1= 1 −42.6 271 = 1 −6.08571. Then
so that
c=.+
.×
17 ±=.±.
42 6 9
252
117
252
σσ3 2214 0 6814
m=
−.
±=−.±.
42 6
252
2520 1691 0 0630
σ
σ
σσ σ σ σ σ
mc==.,==.252 0 0630
117
252
0 6814
xy
x
2x xy
2m
xy x y
xx
cymx
mc=
−
−
±, =− ±
22σσ
σ
σ
σ
σ
mcNx x
x
Nx x
222222222=
−
( )
,=
−
( )
m
xy x y
xx
= cymx
−
−
,=−
22xy mx cx−−=
20
N
iN=
=∑
11