The Chemistry Maths Book, Second Edition

(Grace) #1

21.10 Least squares 621


Division by then gives the pair of normal equations


(21.53)


F1− 1 mE1− 1 c 1 = 10


and these have solution


(21.54)


The resulting line passes through the centroid(E, F)of the data points.


If they


i

values all have the same precision σthen the estimated parameters mand


chave standard deviations given by


(21.55)


and the linear least-squares fit with estimated errors isy 1 = 1 mx 1 + 1 cwith


(21.56)


EXAMPLE 21.15Find the linear least-squares fit for the following data points:


Table 21.7


x 0369121518


y 3.3 2.5 2.3 1.7 1.4 0.5 0.2


We have N 1 = 17 , E1= 19 , F1= 1 1.7, 1 = 1117 ,


1


= 1 64.5 271 = 1 9.21429, 1 −1E


2

1 = 136 and


1 −1EF1= 1 −42.6 271 = 1 −6.08571. Then


so that


c=.+



17 ±=.±.


42 6 9


252


117


252


σσ3 2214 0 6814


m=


−.


±=−.±.


42 6


252
252

0 1691 0 0630


σ


σ


σσ σ σ σ σ


mc

==.,==.252 0 0630


117


252


0 6814


xy


x


2

x xy


2

m


xy x y


xx


cymx


mc

=




±, =− ±


22

σσ


σ


σ


σ


σ


mc

Nx x


x


Nx x


2

2

22

2

22

22

=



( )


,=



( )


m


xy x y


xx


= cymx




,=−


22

xy mx cx−−=


2

0


N


i

N

=


=


1

1

Free download pdf